Cathodoluminescence differentiates sedimentary organic matter types

High-resolution scanning electron microscopy (SEM) visualization of sedimentary organic matter is widely utilized in the geosciences for evaluating microscale rock properties relevant to depositional environment, diagenesis, and the processes of fluid generation, transport, and storage. However, des...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; p. 5969
Main Authors Hackley, Paul C., McAleer, Ryan J., Jubb, Aaron M., Valentine, Brett J., Birdwell, Justin E.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 12.03.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:High-resolution scanning electron microscopy (SEM) visualization of sedimentary organic matter is widely utilized in the geosciences for evaluating microscale rock properties relevant to depositional environment, diagenesis, and the processes of fluid generation, transport, and storage. However, despite thousands of studies which have incorporated SEM methods, the inability of SEM to differentiate sedimentary organic matter types has hampered the pace of scientific advancement. In this study, we show that SEM-cathodoluminescence (CL) properties can be used to identify and characterize sedimentary organic matter at low thermal maturity conditions. Eleven varied mudstone samples with a broad array of sedimentary organic matter types, ranging from the Paleoproterozoic to Eocene in age, were investigated. Sedimentary organic matter fluorescence intensity and CL intensity showed an almost one-to-one correspondence, with certain exceptions in three samples potentially related to radiolytic alteration. Therefore, because CL emission can be used as a proxy for fluorescence emission from sedimentary organic matter, CL emission during SEM visualization can be used to differentiate fluorescent from non-fluorescent sedimentary organic matter. This result will allow CL to be used as a visual means to quickly differentiate sedimentary organic matter types without employing correlative optical microscopy and could be widely and rapidly adapted for SEM-based studies in the geosciences.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-53168-z