Floquet parity-time symmetry in integrated photonics

Parity-time (PT) symmetry has been unveiling new photonic regimes in non-Hermitian systems, with opportunities for lasing, sensing and enhanced light-matter interactions. The most exotic responses emerge at the exceptional point (EP) and in the broken PT-symmetry phase, yet in conventional PT-symmet...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 15; no. 1; pp. 946 - 7
Main Authors Liu, Weijie, Liu, Quancheng, Ni, Xiang, Jia, Yuechen, Ziegler, Klaus, Alù, Andrea, Chen, Feng
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 31.01.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Parity-time (PT) symmetry has been unveiling new photonic regimes in non-Hermitian systems, with opportunities for lasing, sensing and enhanced light-matter interactions. The most exotic responses emerge at the exceptional point (EP) and in the broken PT-symmetry phase, yet in conventional PT-symmetric systems these regimes require large levels of gain and loss, posing remarkable challenges in practical settings. Floquet PT-symmetry, which may be realized by periodically flipping the effective gain/loss distribution in time, can relax these requirements and tailor the EP and PT-symmetry phases through the modulation period. Here, we explore Floquet PT-symmetry in an integrated photonic waveguide platform, in which the role of time is replaced by the propagation direction. We experimentally demonstrate spontaneous PT-symmetry breaking at small gain/loss levels and efficient control of amplification and suppression through the excitation ports. Our work introduces the advantages of Floquet PT-symmetry in a practical integrated photonic setting, enabling a powerful platform to observe PT-symmetric phenomena and leverage their extreme features, with applications in nanophotonics, coherent control of nanoscale light amplification and routing. Here the authors unveil an approach rooted in non-Hermitian physics to precisely control light amplification in an integrated photonic platform, paving the way for innovative on-chip functionalities, like coherent control of light amplification and routing.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-45226-x