An EEG Dataset of Neural Signatures in a Competitive Two-Player Game Encouraging Deceptive Behavior
Studying deception is vital for understanding decision-making and social dynamics. Recent EEG research has deepened insights into the brain mechanisms behind deception. Standard methods in this field often rely on memory, are vulnerable to countermeasures, yield false positives, and lack real-world...
Saved in:
Published in | Scientific data Vol. 11; no. 1; p. 389 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
16.04.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Studying deception is vital for understanding decision-making and social dynamics. Recent EEG research has deepened insights into the brain mechanisms behind deception. Standard methods in this field often rely on memory, are vulnerable to countermeasures, yield false positives, and lack real-world relevance. Here, we present a comprehensive dataset from an EEG-monitored competitive, two-player card game designed to elicit authentic deception behavior. Our extensive dataset contains EEG data from 12 pairs (N = 24 participants with role switching), controlled for age, gender, and risk-taking, with detailed labels and annotations. The dataset combines standard event-related potential and microstate analyses with state-of-the-art decoding approaches of four scenarios: spontaneous/instructed truth-telling and lying. This demonstrates game-based methods’ efficacy in studying deception and sets a benchmark for future research. Overall, our dataset represents a unique resource with applications in cognitive neuroscience and related fields for studying deception, competitive behavior, decision-making, inter-brain synchrony, and benchmarking of decoding frameworks in a difficult, high-level cognitive task. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
ISSN: | 2052-4463 2052-4463 |
DOI: | 10.1038/s41597-024-03234-y |