Robust parallel laser driving of quantum dots for multiplexing of quantum light sources
Deterministic sources of quantum light (i.e. single photons or pairs of entangled photons) are required for a whole host of applications in quantum technology, including quantum imaging, quantum cryptography and the long-distance transfer of quantum information in future quantum networks. Semiconduc...
Saved in:
Published in | Scientific reports Vol. 14; no. 1; p. 5356 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
04.03.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Deterministic sources of quantum light (i.e. single photons or pairs of entangled photons) are required for a whole host of applications in quantum technology, including quantum imaging, quantum cryptography and the long-distance transfer of quantum information in future quantum networks. Semiconductor quantum dots are ideal candidates for solid-state quantum emitters as these artificial atoms have large dipole moments and a quantum confined energy level structure, enabling the realization of single photon sources with high repetition rates and high single photon purity. Quantum dots may also be triggered using a laser pulse for on-demand operation. The naturally-occurring size variations in ensembles of quantum dots offers the potential to increase the bandwidth of quantum communication systems through wavelength-division multiplexing, but conventional laser triggering schemes based on Rabi rotations are ineffective when applied to inequivalent emitters. Here we report the demonstration of the simultaneous triggering of >10 quantum dots using adiabatic rapid passage. We show that high-fidelity quantum state inversion is possible in a system of quantum dots with a 15 meV range of optical transition energies using a single broadband, chirped laser pulse, laying the foundation for high-bandwidth, multiplexed quantum networks. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-024-55634-0 |