Enhanced catalytic activity of N-heterocyclic carbene stabilized surface adatoms for CO reduction reaction

Adatom engineering represents a highly promising opportunity for enhancing electrochemical CO reduction reaction (CORR). However, the aggregation of adatoms under typical reaction conditions often leads to a decline in catalyst activity. Recent studies have revealed that N-heterocyclic carbene (NHC)...

Full description

Saved in:
Bibliographic Details
Published inCommunications chemistry Vol. 6; no. 1; p. 270
Main Authors Gao, Yuxiang, Tao, Lei, Zhang, Yu-Yang, Du, Shixuan
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 11.12.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Adatom engineering represents a highly promising opportunity for enhancing electrochemical CO reduction reaction (CORR). However, the aggregation of adatoms under typical reaction conditions often leads to a decline in catalyst activity. Recent studies have revealed that N-heterocyclic carbene (NHC) can stabilize surface adatoms. Herein, based on density functional theory calculations, we reveal a significant enhancement in the catalytic activity of Cu adatoms decorated with NHC molecules for CORR. The NHC decoration strengthens the interaction between the d xy orbital of the Cu adatom and the p x orbital of the C atom, reducing the energy barriers in both CO hydrogenation and C-C coupling steps. Moreover, the CORR catalytic activity of the NHC decorated adatom can be further improved by tuning the side groups of NHC molecules. These results provide insights for the design of efficient CORR catalysts and offer a theoretical framework that can be extended to other hydrogenation reactions. Single atom catalysts dispersed on a surface demonstrate great promise for a variety of catalytic reactions, but their aggregation leads to a degradation of catalytic activity. Here, the authors use quantum mechanical calculations to study the catalytic activity of Cu adatoms stabilized with N-heterocyclic carbenes (NHCs) on a Cu(100) surface, finding that NHC-decoration significantly reduces the energy barriers to electrocatalytic CO hydrogenation and C–C coupling.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2399-3669
2399-3669
DOI:10.1038/s42004-023-01066-2