Safety and tissue remodeling assay of small intestinal submucosa meshes using a modified porcine surgical hernia model

In studies to date, meshes based on extracellular matrix (ECM) have been extensively used in clinical applications. Unfortunately, little is known about the function of the immunogenic residual, absorbable profile during the tissue repair process. Moreover, there needs to be a recognized preclinical...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 13; no. 1; p. 23108
Main Authors Liu, Chenghu, Lin, Zhenhua, Ruan, Wenting, Gai, Xiaoxiao, Qu, Qiujin, Wang, Changbin, Zhu, Fuyu, Sun, Xiaoxia, Zhang, Jian
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 03.01.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In studies to date, meshes based on extracellular matrix (ECM) have been extensively used in clinical applications. Unfortunately, little is known about the function of the immunogenic residual, absorbable profile during the tissue repair process. Moreover, there needs to be a recognized preclinical animal model to investigate the safety and efficacy of extracellular matrix meshes. Herein, we designed and fabricated a kind of SIS mesh followed by a scanned electron micrograph characterization and tested α-Gal antigen clearance rate and DNA residual. In order to prove the biocompatibility of the SIS mesh, cell viability, chemotaxis assay and local tissue reaction were assessed by MTT and RTCA cytotoxicity test in vitro as well as implantation and degradation experiments in vivo. Furthermore, we developed a stable preclinical animal model in the porcine ventral hernia repair investigation, which using laparoscopic plus open hybridization method to evaluate tissue adhesion, explant mechanical performance, and histologic analysis after mesh implantation. More importantly, we established a semi-quantitative scoring system to examine the ECM degradation, tissue remodeling and regeneration in the modified porcine surgical hernia model for the first time. Our results highlight the application prospect of the improved porcine ventral hernia model for the safety and efficacy investigation of hernia repair meshes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-50425-5