Classification of NSCLC subtypes using lung microbiome from resected tissue based on machine learning methods

Classification of adenocarcinoma (AC) and squamous cell carcinoma (SCC) poses significant challenges for cytopathologists, often necessitating clinical tests and biopsies that delay treatment initiation. To address this, we developed a machine learning-based approach utilizing resected lung-tissue m...

Full description

Saved in:
Bibliographic Details
Published inNPJ systems biology and applications Vol. 11; no. 1; pp. 11 - 13
Main Authors Kashyap, Pragya, Raj, Kalbhavi Vadhi, Sharma, Jyoti, Dutt, Naveen, Yadav, Pankaj
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 17.01.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Classification of adenocarcinoma (AC) and squamous cell carcinoma (SCC) poses significant challenges for cytopathologists, often necessitating clinical tests and biopsies that delay treatment initiation. To address this, we developed a machine learning-based approach utilizing resected lung-tissue microbiome of AC and SCC patients for subtype classification. Differentially enriched taxa were identified using LEfSe, revealing ten potential microbial markers. Linear discriminant analysis (LDA) was subsequently applied to enhance inter-class separability. Next, benchmarking was performed across six different supervised-classification algorithms viz . logistic-regression, naïve-bayes, random-forest, extreme-gradient-boost (XGBoost), k-nearest neighbor, and deep neural network. Noteworthy, XGBoost, with an accuracy of 76.25%, and AUROC (area-under-receiver-operating-characteristic) of 0.81 with 69% specificity and 76% sensitivity, outperform the other five classification algorithms using LDA-transformed features. Validation on an independent dataset confirmed its robustness with an AUROC of 0.71, with minimal false positives and negatives. This study is the first to classify AC and SCC subtypes using lung-tissue microbiome.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2056-7189
2056-7189
DOI:10.1038/s41540-025-00491-4