Analysis and Modeling of Innovations in the Global Microalgae Lipids Market
Microalgae lipids offer numerous advantages over those of plants and animals, enabling the sustainable commercialization of high value-added products in different markets. Although these markets are in a vertiginous annual expansion, technological life cycle modeling is a tool that has been rarely u...
Saved in:
Published in | Biotech (Basel) Vol. 11; no. 3; p. 37 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
24.08.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Microalgae lipids offer numerous advantages over those of plants and animals, enabling the sustainable commercialization of high value-added products in different markets. Although these markets are in a vertiginous annual expansion, technological life cycle modeling is a tool that has been rarely used for microalgae. Life cycle modeling is capable of assisting with decision-making based on data and is considered as a versatile model, usable in multiple software analyzing and diagnostic tasks. Modeling technological trends makes it possible to categorize the development level of the market and predict phase changes, reducing uncertainties and increasing investments. This study aims to fill this gap by performing a global analysis and modeling of microalgal lipid innovations. The Espacenet and Orbit platforms were used by crossing the keywords “microalgae”, “lipid*”, and the IPC code C12 (biochemistry and microbiology). Different sigmoid growth models were used in the present study. A successive repetition of the Chlorella genus category was found in the keyword clusters regarding extraction and separation of lipids. The life cycle S curve indicates a market starting at the maturity phase, where the BiDoseResp model stands out. The main countries and institutions at the technological forefront are shown, as well as potential technological domains for opening new markets. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ISSN: | 2673-6284 2673-6284 |
DOI: | 10.3390/biotech11030037 |