Aloe vera extract functionalized zinc oxide nanoparticles as nanoantibiotics against multi-drug resistant clinical bacterial isolates

[Display omitted] ZnO nanoparticles (ZnONPs) were synthesised through a simple and efficient biogenic synthesis approach, exploiting the reducing and capping potential of Aloe barbadensis Miller (A. vera) leaf extract (ALE). ALE-capped ZnO nanoparticles (ALE-ZnONPs) were characterized using UV–Vis s...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 472; pp. 145 - 156
Main Authors Ali, Khursheed, Dwivedi, Sourabh, Azam, Ameer, Saquib, Quaiser, Al-Said, Mansour S., Alkhedhairy, Abdulaziz A., Musarrat, Javed
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.06.2016
Subjects
Online AccessGet full text
ISSN0021-9797
1095-7103
1095-7103
DOI10.1016/j.jcis.2016.03.021

Cover

Loading…
Abstract [Display omitted] ZnO nanoparticles (ZnONPs) were synthesised through a simple and efficient biogenic synthesis approach, exploiting the reducing and capping potential of Aloe barbadensis Miller (A. vera) leaf extract (ALE). ALE-capped ZnO nanoparticles (ALE-ZnONPs) were characterized using UV–Vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) analyses. XRD analysis provided the average size of ZnONPs as 15nm. FTIR spectral analysis suggested the role of phenolic compounds, terpenoids and proteins present in ALE, in nucleation and stability of ZnONPs. Flow cytometry and atomic absorption spectrophotometry (AAS) data analyses revealed the surface binding and internalization of ZnONPs in Gram +ve (Staphylococcus aureus) and Gram −ve (Escherichia coli) cells, respectively. Significant antibacterial activity of ALE-ZnONPs was observed against extended spectrum beta lactamases (ESBL) positive E. coli, Pseudomonas aeruginosa, and methicillin resistant S. aureus (MRSA) clinical isolates exhibiting the MIC and MBC values of 2200, 2400μg/ml and 2300, 2700μg/ml, respectively. Substantial inhibitory effects of ALE-ZnONPs on bacterial growth kinetics, exopolysaccharides and biofilm formation, unequivocally suggested the antibiotic and anti-biofilm potential. Overall, the results elucidated a rapid, environmentally benign, cost-effective, and convenient method for ALE-ZnONPs synthesis, for possible applications as nanoantibiotics or drug carriers.
AbstractList [Display omitted] ZnO nanoparticles (ZnONPs) were synthesised through a simple and efficient biogenic synthesis approach, exploiting the reducing and capping potential of Aloe barbadensis Miller (A. vera) leaf extract (ALE). ALE-capped ZnO nanoparticles (ALE-ZnONPs) were characterized using UV–Vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) analyses. XRD analysis provided the average size of ZnONPs as 15nm. FTIR spectral analysis suggested the role of phenolic compounds, terpenoids and proteins present in ALE, in nucleation and stability of ZnONPs. Flow cytometry and atomic absorption spectrophotometry (AAS) data analyses revealed the surface binding and internalization of ZnONPs in Gram +ve (Staphylococcus aureus) and Gram −ve (Escherichia coli) cells, respectively. Significant antibacterial activity of ALE-ZnONPs was observed against extended spectrum beta lactamases (ESBL) positive E. coli, Pseudomonas aeruginosa, and methicillin resistant S. aureus (MRSA) clinical isolates exhibiting the MIC and MBC values of 2200, 2400μg/ml and 2300, 2700μg/ml, respectively. Substantial inhibitory effects of ALE-ZnONPs on bacterial growth kinetics, exopolysaccharides and biofilm formation, unequivocally suggested the antibiotic and anti-biofilm potential. Overall, the results elucidated a rapid, environmentally benign, cost-effective, and convenient method for ALE-ZnONPs synthesis, for possible applications as nanoantibiotics or drug carriers.
ZnO nanoparticles (ZnONPs) were synthesised through a simple and efficient biogenic synthesis approach, exploiting the reducing and capping potential of Aloe barbadensis Miller (A. vera) leaf extract (ALE). ALE-capped ZnO nanoparticles (ALE-ZnONPs) were characterized using UV-Vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) analyses. XRD analysis provided the average size of ZnONPs as 15 nm. FTIR spectral analysis suggested the role of phenolic compounds, terpenoids and proteins present in ALE, in nucleation and stability of ZnONPs. Flow cytometry and atomic absorption spectrophotometry (AAS) data analyses revealed the surface binding and internalization of ZnONPs in Gram +ve (Staphylococcus aureus) and Gram -ve (Escherichia coli) cells, respectively. Significant antibacterial activity of ALE-ZnONPs was observed against extended spectrum beta lactamases (ESBL) positive E. coli, Pseudomonas aeruginosa, and methicillin resistant S. aureus (MRSA) clinical isolates exhibiting the MIC and MBC values of 2200, 2400 μg/ml and 2300, 2700 μg/ml, respectively. Substantial inhibitory effects of ALE-ZnONPs on bacterial growth kinetics, exopolysaccharides and biofilm formation, unequivocally suggested the antibiotic and anti-biofilm potential. Overall, the results elucidated a rapid, environmentally benign, cost-effective, and convenient method for ALE-ZnONPs synthesis, for possible applications as nanoantibiotics or drug carriers.
ZnO nanoparticles (ZnONPs) were synthesised through a simple and efficient biogenic synthesis approach, exploiting the reducing and capping potential of Aloe barbadensis Miller (A. vera) leaf extract (ALE). ALE-capped ZnO nanoparticles (ALE-ZnONPs) were characterized using UV-Vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) analyses. XRD analysis provided the average size of ZnONPs as 15 nm. FTIR spectral analysis suggested the role of phenolic compounds, terpenoids and proteins present in ALE, in nucleation and stability of ZnONPs. Flow cytometry and atomic absorption spectrophotometry (AAS) data analyses revealed the surface binding and internalization of ZnONPs in Gram +ve (Staphylococcus aureus) and Gram -ve (Escherichia coli) cells, respectively. Significant antibacterial activity of ALE-ZnONPs was observed against extended spectrum beta lactamases (ESBL) positive E. coli, Pseudomonas aeruginosa, and methicillin resistant S. aureus (MRSA) clinical isolates exhibiting the MIC and MBC values of 2200, 2400 mu g/ml and 2300, 2700 mu g/ml, respectively. Substantial inhibitory effects of ALE-ZnONPs on bacterial growth kinetics, exopolysaccharides and biofilm formation, unequivocally suggested the antibiotic and anti-biofilm potential. Overall, the results elucidated a rapid, environmentally benign, cost-effective, and convenient method for ALE-ZnONPs synthesis, for possible applications as nanoantibiotics or drug carriers.
ZnO nanoparticles (ZnONPs) were synthesised through a simple and efficient biogenic synthesis approach, exploiting the reducing and capping potential of Aloe barbadensis Miller (A. vera) leaf extract (ALE). ALE-capped ZnO nanoparticles (ALE-ZnONPs) were characterized using UV-Vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) analyses. XRD analysis provided the average size of ZnONPs as 15 nm. FTIR spectral analysis suggested the role of phenolic compounds, terpenoids and proteins present in ALE, in nucleation and stability of ZnONPs. Flow cytometry and atomic absorption spectrophotometry (AAS) data analyses revealed the surface binding and internalization of ZnONPs in Gram +ve (Staphylococcus aureus) and Gram -ve (Escherichia coli) cells, respectively. Significant antibacterial activity of ALE-ZnONPs was observed against extended spectrum beta lactamases (ESBL) positive E. coli, Pseudomonas aeruginosa, and methicillin resistant S. aureus (MRSA) clinical isolates exhibiting the MIC and MBC values of 2200, 2400 μg/ml and 2300, 2700 μg/ml, respectively. Substantial inhibitory effects of ALE-ZnONPs on bacterial growth kinetics, exopolysaccharides and biofilm formation, unequivocally suggested the antibiotic and anti-biofilm potential. Overall, the results elucidated a rapid, environmentally benign, cost-effective, and convenient method for ALE-ZnONPs synthesis, for possible applications as nanoantibiotics or drug carriers.ZnO nanoparticles (ZnONPs) were synthesised through a simple and efficient biogenic synthesis approach, exploiting the reducing and capping potential of Aloe barbadensis Miller (A. vera) leaf extract (ALE). ALE-capped ZnO nanoparticles (ALE-ZnONPs) were characterized using UV-Vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) analyses. XRD analysis provided the average size of ZnONPs as 15 nm. FTIR spectral analysis suggested the role of phenolic compounds, terpenoids and proteins present in ALE, in nucleation and stability of ZnONPs. Flow cytometry and atomic absorption spectrophotometry (AAS) data analyses revealed the surface binding and internalization of ZnONPs in Gram +ve (Staphylococcus aureus) and Gram -ve (Escherichia coli) cells, respectively. Significant antibacterial activity of ALE-ZnONPs was observed against extended spectrum beta lactamases (ESBL) positive E. coli, Pseudomonas aeruginosa, and methicillin resistant S. aureus (MRSA) clinical isolates exhibiting the MIC and MBC values of 2200, 2400 μg/ml and 2300, 2700 μg/ml, respectively. Substantial inhibitory effects of ALE-ZnONPs on bacterial growth kinetics, exopolysaccharides and biofilm formation, unequivocally suggested the antibiotic and anti-biofilm potential. Overall, the results elucidated a rapid, environmentally benign, cost-effective, and convenient method for ALE-ZnONPs synthesis, for possible applications as nanoantibiotics or drug carriers.
ZnO nanoparticles (ZnONPs) were synthesised through a simple and efficient biogenic synthesis approach, exploiting the reducing and capping potential of Aloe barbadensis Miller (A. vera) leaf extract (ALE). ALE-capped ZnO nanoparticles (ALE-ZnONPs) were characterized using UV–Vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) analyses. XRD analysis provided the average size of ZnONPs as 15nm. FTIR spectral analysis suggested the role of phenolic compounds, terpenoids and proteins present in ALE, in nucleation and stability of ZnONPs. Flow cytometry and atomic absorption spectrophotometry (AAS) data analyses revealed the surface binding and internalization of ZnONPs in Gram +ve (Staphylococcus aureus) and Gram −ve (Escherichia coli) cells, respectively. Significant antibacterial activity of ALE-ZnONPs was observed against extended spectrum beta lactamases (ESBL) positive E. coli, Pseudomonas aeruginosa, and methicillin resistant S. aureus (MRSA) clinical isolates exhibiting the MIC and MBC values of 2200, 2400μg/ml and 2300, 2700μg/ml, respectively. Substantial inhibitory effects of ALE-ZnONPs on bacterial growth kinetics, exopolysaccharides and biofilm formation, unequivocally suggested the antibiotic and anti-biofilm potential. Overall, the results elucidated a rapid, environmentally benign, cost-effective, and convenient method for ALE-ZnONPs synthesis, for possible applications as nanoantibiotics or drug carriers.
Author Dwivedi, Sourabh
Musarrat, Javed
Al-Said, Mansour S.
Alkhedhairy, Abdulaziz A.
Saquib, Quaiser
Ali, Khursheed
Azam, Ameer
Author_xml – sequence: 1
  givenname: Khursheed
  surname: Ali
  fullname: Ali, Khursheed
  organization: Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
– sequence: 2
  givenname: Sourabh
  surname: Dwivedi
  fullname: Dwivedi, Sourabh
  organization: Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
– sequence: 3
  givenname: Ameer
  surname: Azam
  fullname: Azam, Ameer
  organization: Department of Applied Physics, Faculty of Engineering & Technology, Aligarh Muslim University, Aligarh 202002, U.P., India
– sequence: 4
  givenname: Quaiser
  surname: Saquib
  fullname: Saquib, Quaiser
  organization: Chair for DNA Research, Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
– sequence: 5
  givenname: Mansour S.
  surname: Al-Said
  fullname: Al-Said, Mansour S.
  organization: Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
– sequence: 6
  givenname: Abdulaziz A.
  surname: Alkhedhairy
  fullname: Alkhedhairy, Abdulaziz A.
  organization: Chair for DNA Research, Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
– sequence: 7
  givenname: Javed
  surname: Musarrat
  fullname: Musarrat, Javed
  email: musarratj1@yahoo.com
  organization: Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27031596$$D View this record in MEDLINE/PubMed
BookMark eNqNkjtvFDEUhS0URDaBP0CBXNLMYnvG85BoooiXFIkGasuPO9Fdee3F9kQhff43HjZpKBIqW0ffub7yOWfkJMQAhLzlbMsZ7z_stjuLeSvqfcvaLRP8BdlwNslm4Kw9IRtWpWYapuGUnOW8Y4xzKadX5FQMrOVy6jfk_sJHoDeQNIXbkrQtdF6CLRiD9ngHjt5hsDTeogMadIgHnQpaD5nq_FfQoaDBWMUqXWsMudD94gs2Li3XNEHGXCpErceAVntq6iuQsN4wR68L5Nfk5ax9hjcP5zn5-fnTj8uvzdX3L98uL64a202iNP3EWtHO2gA3Vo69dYOw1vVsYKMDYzrN-6nreCf07LQ0A8xzb5yV3Dg5g2jPyfvj3EOKvxbIRe0xW_BeB4hLVoKvA5js-2dRPnZ9V79Ziv9AeV2xm8bxeXQYmeRiGNcF3j2gi9mDU4eEe51-q8fsKjAeAZtizglmZbHoNbmaI3rFmVpronZqrYlaa6JYq2onqlX8Y32c_qTp49EENaEbhKSyRQgWHCawRbmIT9n_AMHU2Sc
CitedBy_id crossref_primary_10_1016_j_materresbull_2017_09_059
crossref_primary_10_3390_ma13143197
crossref_primary_10_1016_j_hybadv_2024_100160
crossref_primary_10_1002_slct_202405811
crossref_primary_10_1016_j_mssp_2018_01_026
crossref_primary_10_1080_24701556_2023_2165681
crossref_primary_10_1016_j_envres_2024_119047
crossref_primary_10_1016_j_matpr_2021_02_829
crossref_primary_10_1016_j_matpr_2022_09_413
crossref_primary_10_1002_ppsc_202400005
crossref_primary_10_1039_C6RA13871C
crossref_primary_10_3390_ma15062160
crossref_primary_10_1016_j_inoche_2020_108066
crossref_primary_10_1080_21691401_2018_1439837
crossref_primary_10_1016_j_inoche_2022_110155
crossref_primary_10_3390_pharmaceutics13101662
crossref_primary_10_1111_jam_15177
crossref_primary_10_1016_j_eti_2021_101719
crossref_primary_10_1016_j_msec_2018_05_077
crossref_primary_10_3390_ijms23052734
crossref_primary_10_1039_C9RA03962G
crossref_primary_10_1016_j_molstruc_2022_132420
crossref_primary_10_1016_j_bcab_2021_102171
crossref_primary_10_1007_s11270_023_06695_w
crossref_primary_10_1016_j_inoche_2024_113792
crossref_primary_10_1016_j_inoche_2024_112341
crossref_primary_10_14233_ajchem_2022_23790
crossref_primary_10_1016_j_enmm_2023_100779
crossref_primary_10_1016_j_jece_2022_108065
crossref_primary_10_1016_j_nanoso_2018_07_010
crossref_primary_10_1007_s11356_021_13532_2
crossref_primary_10_14233_ajchem_2020_22971
crossref_primary_10_1016_j_nxnano_2024_100095
crossref_primary_10_1016_j_jmst_2018_06_011
crossref_primary_10_1016_j_jmat_2020_12_008
crossref_primary_10_3390_nano8121009
crossref_primary_10_1016_j_saa_2021_119459
crossref_primary_10_1007_s13204_022_02610_7
crossref_primary_10_1016_j_jelechem_2017_11_039
crossref_primary_10_1016_j_ceramint_2024_05_200
crossref_primary_10_1088_2043_6262_acf28a
crossref_primary_10_1016_j_jiec_2016_10_013
crossref_primary_10_1155_2021_3941923
crossref_primary_10_1007_s11837_020_04475_z
crossref_primary_10_1016_j_msec_2019_109844
crossref_primary_10_1016_j_lwt_2022_113762
crossref_primary_10_1016_j_ijpharm_2022_121617
crossref_primary_10_1007_s43153_023_00315_0
crossref_primary_10_1007_s10562_025_04932_x
crossref_primary_10_1016_j_biopha_2019_108983
crossref_primary_10_1016_j_heliyon_2020_e03156
crossref_primary_10_1080_24701556_2021_1999271
crossref_primary_10_1007_s10876_020_01918_0
crossref_primary_10_1007_s42452_019_0931_4
crossref_primary_10_1007_s10570_024_05914_9
crossref_primary_10_1016_j_inoche_2022_110015
crossref_primary_10_1111_jace_20278
crossref_primary_10_1515_chem_2023_0141
crossref_primary_10_1021_acsomega_3c05947
crossref_primary_10_1016_j_matpr_2021_03_409
crossref_primary_10_1016_j_jallcom_2021_160175
crossref_primary_10_1007_s40097_018_0257_6
crossref_primary_10_1016_j_jphotobiol_2019_111700
crossref_primary_10_3390_ph14020139
crossref_primary_10_1007_s11696_020_01177_3
crossref_primary_10_17159_sajs_2022_11225
crossref_primary_10_1149_2162_8777_ac44f2
crossref_primary_10_1155_2018_3569758
crossref_primary_10_1088_2053_1591_abd421
crossref_primary_10_1016_j_matpr_2021_05_245
crossref_primary_10_1002_jbt_23167
crossref_primary_10_1155_2018_1062562
crossref_primary_10_1002_aoc_7702
crossref_primary_10_1016_j_jtemb_2018_07_009
crossref_primary_10_3390_nano12234167
crossref_primary_10_1016_j_cbi_2018_03_008
crossref_primary_10_1080_21622515_2023_2283412
crossref_primary_10_1016_j_optmat_2024_115422
crossref_primary_10_2166_wst_2022_428
crossref_primary_10_21931_RB_2023_08_02_75
crossref_primary_10_26599_NBE_2023_9290003
crossref_primary_10_1016_j_matpr_2020_10_548
crossref_primary_10_3389_fmicb_2022_1001865
crossref_primary_10_1002_fsn3_3528
crossref_primary_10_29328_journal_aac_1001028
crossref_primary_10_3390_metabo13080905
crossref_primary_10_1016_j_pmpp_2017_02_004
crossref_primary_10_1016_j_sajce_2020_05_009
crossref_primary_10_1016_j_btre_2021_e00595
crossref_primary_10_1007_s10971_021_05681_0
crossref_primary_10_1016_j_conctc_2020_100680
crossref_primary_10_1007_s10904_020_01690_8
crossref_primary_10_3390_molecules26082236
crossref_primary_10_1007_s43630_023_00462_w
crossref_primary_10_1177_15589250211046242
crossref_primary_10_1039_C9CS00871C
crossref_primary_10_3923_jas_2018_65_70
crossref_primary_10_1080_03067319_2024_2305238
crossref_primary_10_1007_s10562_019_03037_6
crossref_primary_10_1515_ntrev_2021_0099
crossref_primary_10_1016_j_enzmictec_2018_06_009
crossref_primary_10_1016_j_mtcomm_2024_110107
crossref_primary_10_1111_wej_12619
crossref_primary_10_3390_biomedicines10071619
crossref_primary_10_1080_24701556_2020_1835962
crossref_primary_10_1016_j_heliyon_2022_e10277
crossref_primary_10_3390_plants12152826
crossref_primary_10_1007_s12668_024_01366_4
crossref_primary_10_1016_j_ijbiomac_2022_10_158
crossref_primary_10_1016_j_bcab_2023_102654
crossref_primary_10_2217_nnm_2022_0092
crossref_primary_10_3390_s22134669
crossref_primary_10_1002_slct_202402517
crossref_primary_10_1016_j_jics_2023_100917
crossref_primary_10_1007_s11738_021_03307_0
crossref_primary_10_1016_j_molliq_2024_125861
crossref_primary_10_46754_umtjur_v2i2_108
crossref_primary_10_3390_ma11060940
crossref_primary_10_1007_s11356_024_32983_x
crossref_primary_10_1142_S0219581X2450011X
crossref_primary_10_14233_ajchem_2021_22990
crossref_primary_10_1080_24701556_2021_1880437
crossref_primary_10_1016_j_inoche_2022_110362
crossref_primary_10_1080_01932691_2022_2125005
crossref_primary_10_1016_j_susmat_2022_e00540
crossref_primary_10_1007_s00344_022_10728_9
crossref_primary_10_1088_1402_4896_ad5f59
crossref_primary_10_1016_j_apsusc_2019_04_136
crossref_primary_10_1016_j_jsamd_2020_07_009
crossref_primary_10_1016_j_ceramint_2019_05_309
crossref_primary_10_3390_polym13234234
crossref_primary_10_1007_s12668_021_00864_z
crossref_primary_10_1016_j_procbio_2024_08_015
crossref_primary_10_1016_j_coesh_2021_100292
crossref_primary_10_1016_j_jiph_2017_10_006
crossref_primary_10_34172_PS_2020_56
crossref_primary_10_1016_j_ceramint_2021_03_301
crossref_primary_10_1007_s12034_018_1568_4
crossref_primary_10_1016_j_enmm_2019_100279
crossref_primary_10_1016_j_lwt_2020_110133
crossref_primary_10_1016_j_bioadv_2022_213205
crossref_primary_10_1080_21691401_2017_1282868
crossref_primary_10_1021_acsomega_3c05743
crossref_primary_10_1016_j_microb_2025_100247
crossref_primary_10_1016_j_heliyon_2023_e19230
crossref_primary_10_3390_catal12080833
crossref_primary_10_1016_j_colsurfb_2018_12_002
crossref_primary_10_1016_j_chemosphere_2021_132162
crossref_primary_10_3389_fmicb_2021_768739
crossref_primary_10_1186_s40538_023_00432_5
crossref_primary_10_1016_j_sajb_2021_08_021
crossref_primary_10_2139_ssrn_4105034
crossref_primary_10_3390_nano9081171
crossref_primary_10_3390_antibiotics10121473
crossref_primary_10_1007_s12010_024_05020_3
crossref_primary_10_1016_j_crfs_2022_05_002
crossref_primary_10_29252_jpg_8_27_61
crossref_primary_10_1007_s12668_023_01165_3
crossref_primary_10_1016_j_nanoso_2024_101158
crossref_primary_10_1088_2053_1591_ab4458
crossref_primary_10_1080_14787210_2021_1908125
crossref_primary_10_1016_j_bbrep_2019_01_002
crossref_primary_10_3934_agrfood_2021037
crossref_primary_10_1080_20415990_2024_2437978
crossref_primary_10_1016_j_jbiotec_2024_08_009
crossref_primary_10_1007_s13399_022_03257_8
crossref_primary_10_1007_s10973_024_13887_x
crossref_primary_10_1007_s13399_021_02187_1
crossref_primary_10_1016_j_ceramint_2024_11_448
crossref_primary_10_1186_s11671_021_03555_6
crossref_primary_10_1155_2021_8833864
crossref_primary_10_3390_ph15040455
crossref_primary_10_1016_j_est_2020_101275
crossref_primary_10_1016_j_genrep_2020_100688
crossref_primary_10_1016_j_apsadv_2022_100314
crossref_primary_10_1016_j_cej_2023_141734
crossref_primary_10_3390_antibiotics10060725
crossref_primary_10_1007_s10311_022_01409_w
crossref_primary_10_1007_s13399_021_01873_4
crossref_primary_10_3390_separations10030173
crossref_primary_10_1515_gps_2022_0057
crossref_primary_10_1016_j_btre_2020_e00427
crossref_primary_10_3390_microorganisms10112195
crossref_primary_10_1088_1757_899X_943_1_012030
crossref_primary_10_4191_kcers_2017_54_3_04
crossref_primary_10_1007_s00775_019_01717_7
crossref_primary_10_1016_j_jphotobiol_2016_12_011
crossref_primary_10_1557_s43578_023_01024_7
crossref_primary_10_1016_j_bcab_2022_102506
crossref_primary_10_1016_j_sajb_2023_12_001
crossref_primary_10_1016_j_ultsonch_2017_09_001
crossref_primary_10_1016_j_molliq_2018_11_085
crossref_primary_10_1016_j_ijbiomac_2020_10_042
crossref_primary_10_3390_microorganisms8101545
crossref_primary_10_1080_26896583_2023_2293443
crossref_primary_10_3390_molecules25071586
crossref_primary_10_1016_j_jallcom_2016_10_196
crossref_primary_10_1007_s12668_024_01689_2
crossref_primary_10_1016_j_matchemphys_2024_129913
crossref_primary_10_1016_j_reffit_2017_03_002
crossref_primary_10_3389_fbioe_2022_917990
crossref_primary_10_1088_2043_6254_aaa6f1
crossref_primary_10_1016_j_ssc_2020_114106
crossref_primary_10_1142_S0218625X24501245
crossref_primary_10_1016_j_matpr_2018_06_559
crossref_primary_10_1177_15593258221117352
crossref_primary_10_1016_j_foodres_2024_114650
crossref_primary_10_1021_acsfoodscitech_2c00043
crossref_primary_10_1111_php_13005
crossref_primary_10_1007_s13596_023_00735_w
crossref_primary_10_3389_fvets_2021_572568
crossref_primary_10_1002_bab_2345
crossref_primary_10_1016_j_materresbull_2018_09_025
crossref_primary_10_1007_s10904_020_01494_w
crossref_primary_10_3390_ma15196978
crossref_primary_10_1007_s10904_020_01576_9
crossref_primary_10_1088_2053_1591_acbe2a
crossref_primary_10_1007_s10904_019_01114_2
crossref_primary_10_1016_j_cinorg_2024_100084
crossref_primary_10_1016_j_ceramint_2025_02_016
crossref_primary_10_1016_j_jclepro_2019_01_018
crossref_primary_10_1016_j_mimet_2019_105766
crossref_primary_10_1039_D0RA00478B
crossref_primary_10_3390_ijms24098114
crossref_primary_10_1016_j_heliyon_2022_e11080
crossref_primary_10_1016_j_jphotobiol_2019_111636
crossref_primary_10_1007_s10544_017_0233_9
crossref_primary_10_1016_j_foodchem_2020_127807
crossref_primary_10_1007_s42729_024_01733_w
crossref_primary_10_1002_tcr_201700061
crossref_primary_10_1039_C7RA05040B
crossref_primary_10_1016_j_biopha_2022_113008
crossref_primary_10_1088_1742_6596_2114_1_012081
crossref_primary_10_1007_s10854_022_09125_5
crossref_primary_10_1016_j_jphotobiol_2018_09_017
crossref_primary_10_1016_j_molliq_2021_115805
crossref_primary_10_3390_pollutants3030025
crossref_primary_10_1007_s00339_023_07025_x
crossref_primary_10_1016_j_bioorg_2019_103423
crossref_primary_10_1016_j_jddst_2020_102052
crossref_primary_10_1007_s42247_022_00402_x
crossref_primary_10_1007_s13204_022_02601_8
crossref_primary_10_1038_s41598_022_19403_1
crossref_primary_10_2174_1872211313666190911124626
crossref_primary_10_3103_S106837552205012X
crossref_primary_10_1002_slct_202003517
crossref_primary_10_1002_masy_202100177
crossref_primary_10_1016_j_chemosphere_2022_133603
crossref_primary_10_1049_iet_nbt_2017_0193
crossref_primary_10_3390_ma16072819
crossref_primary_10_1080_10408398_2022_2119201
crossref_primary_10_1557_s43580_022_00279_2
crossref_primary_10_1016_j_jphotobiol_2018_04_036
crossref_primary_10_3139_146_111972
crossref_primary_10_3389_fmicb_2018_01441
crossref_primary_10_1080_09603123_2020_1805415
crossref_primary_10_2147_IJN_S271743
crossref_primary_10_1016_j_jiec_2024_12_061
crossref_primary_10_1002_chem_202004828
crossref_primary_10_1016_j_ceramint_2022_03_091
crossref_primary_10_1016_j_micpath_2018_05_041
crossref_primary_10_1016_j_molstruc_2022_132460
crossref_primary_10_1016_j_jddst_2024_105731
crossref_primary_10_1016_j_msec_2017_03_090
crossref_primary_10_3390_cryst11040344
crossref_primary_10_1088_2043_6262_acf2ef
crossref_primary_10_1016_j_inoche_2024_113002
crossref_primary_10_1093_femsre_fux003
crossref_primary_10_1007_s10876_022_02276_9
crossref_primary_10_1016_j_jiec_2021_04_010
crossref_primary_10_1016_j_jmrt_2020_05_004
crossref_primary_10_1088_2631_6331_ad2c10
crossref_primary_10_3390_nano12111841
crossref_primary_10_1007_s41204_022_00287_5
crossref_primary_10_18311_jnr_2024_36484
crossref_primary_10_1016_j_msec_2019_01_031
crossref_primary_10_1080_21691401_2021_1890099
crossref_primary_10_1016_j_onano_2022_100067
crossref_primary_10_1007_s42823_023_00548_6
crossref_primary_10_1016_j_mimet_2019_105716
crossref_primary_10_1016_j_plaphy_2022_11_013
crossref_primary_10_1155_2021_9210817
crossref_primary_10_1007_s12035_018_0935_x
crossref_primary_10_1007_s10904_020_01684_6
crossref_primary_10_1016_j_cplett_2022_140112
crossref_primary_10_1007_s40495_023_00340_0
crossref_primary_10_3390_pr11123356
crossref_primary_10_1007_s10853_019_04121_3
crossref_primary_10_1016_j_ijleo_2022_170352
crossref_primary_10_1038_s41598_020_77854_w
crossref_primary_10_3390_nano11113008
crossref_primary_10_1002_slct_201903159
crossref_primary_10_52711_0974_360X_2022_00474
crossref_primary_10_1007_s12668_024_01581_z
crossref_primary_10_1039_C7NJ02664A
Cites_doi 10.1371/journal.pone.0131178
10.1016/0378-8741(95)01288-O
10.1016/j.chemosphere.2011.01.025
10.1007/s11274-014-1757-2
10.1371/journal.pone.0111289
10.1021/bp0501423
10.1186/1477-3155-11-39
10.1021/jp0274076
10.1063/1.3504340
10.1074/jbc.M111.255752
10.1016/0378-8741(91)90011-2
10.1093/jac/48.4.487
10.3390/ma4061132
10.1016/S0927-7757(01)00959-1
10.1016/j.biomaterials.2009.07.030
10.1016/j.saa.2007.12.002
10.1021/tx800289z
10.7547/87507315-84-2-77
10.3390/ijerph10105221
10.1016/j.actbio.2008.11.011
10.1007/s11051-006-9150-1
10.1016/S0378-8741(96)01476-6
10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3
10.1016/j.archoralbio.2013.09.011
10.5101/nbe.v2i4.p252-257
10.1016/S0014-5793(97)01197-6
10.1016/j.colsurfb.2013.06.003
10.1111/j.1365-4362.1991.tb02607.x
10.1016/S0921-5107(00)00604-8
10.1103/PhysRev.56.978
10.1016/j.materresbull.2011.07.046
10.1016/j.matlet.2013.01.085
10.1016/j.colsurfb.2009.05.018
10.1016/j.vacuum.2004.08.003
ContentType Journal Article
Copyright 2016 Elsevier Inc.
Copyright © 2016 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2016 Elsevier Inc.
– notice: Copyright © 2016 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7U5
8FD
L7M
7QL
C1K
7S9
L.6
DOI 10.1016/j.jcis.2016.03.021
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE
Technology Research Database
MEDLINE - Academic
Bacteriology Abstracts (Microbiology B)
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 156
ExternalDocumentID 27031596
10_1016_j_jcis_2016_03_021
S0021979716301631
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
WH7
XPP
YQT
ZMT
ZU3
~02
~G-
.GJ
29K
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CAG
CITATION
COF
D-I
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
H~9
NDZJH
NEJ
R2-
SCB
SCE
SEW
SSH
VH1
WUQ
ZGI
ZXP
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7U5
8FD
L7M
7QL
C1K
7S9
L.6
ID FETCH-LOGICAL-c492t-690323fabe1bc586cd72ccd60708debb4a16944142afda5b7eff6bdc51bd5fe23
IEDL.DBID .~1
ISSN 0021-9797
1095-7103
IngestDate Fri Sep 05 11:40:09 EDT 2025
Fri Sep 05 09:11:55 EDT 2025
Thu Sep 04 22:55:22 EDT 2025
Thu Sep 04 23:53:28 EDT 2025
Mon Jul 21 06:02:58 EDT 2025
Thu Apr 24 23:04:49 EDT 2025
Tue Jul 01 01:18:15 EDT 2025
Fri Feb 23 02:33:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Biofilm inhibition
Aloe vera
ZnO nanoparticles
Biogenic synthesis
Language English
License Copyright © 2016 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-690323fabe1bc586cd72ccd60708debb4a16944142afda5b7eff6bdc51bd5fe23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27031596
PQID 1780512786
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2116940566
proquest_miscellaneous_1846410352
proquest_miscellaneous_1816074988
proquest_miscellaneous_1780512786
pubmed_primary_27031596
crossref_citationtrail_10_1016_j_jcis_2016_03_021
crossref_primary_10_1016_j_jcis_2016_03_021
elsevier_sciencedirect_doi_10_1016_j_jcis_2016_03_021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-06-15
PublicationDateYYYYMMDD 2016-06-15
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of colloid and interface science
PublicationTitleAlternate J Colloid Interface Sci
PublicationYear 2016
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Okafor, Janen, Kukhtareva, Edwards, Curley (b0040) 2013; 10
Nagarajan, Kuppusamy (b0150) 2013; 11
Barnes, Anderson, Phillipson (b0070) 1996
Tomczak, Gupta, Drummy, Rozenbak, Naik (b0055) 2009; 5
Su (b0230) 2009; 30
Davis, Donato, Hartman, Haa (b0075) 1994; 84
Tachikawa, Noguchi, Tsuge, Hara, Odawara, Wada (b0005) 2011; 4
Tiwari, Behari, Sen (b0050) 2008; 3
Jha, Orasad, Prasad, Kulakarni (b0035) 2009; 73
Lalitha, Subbaiya, Ponmurugan (b0185) 2013; 2
Sahu (b0010) 2013; 4
extract. In: Proceedings of International Conference On Advanced Nanomaterials And Nanotechnology. ICANN‐2009, Guwahati, Assam (India), 9–11 December (2009), 2010.
Ernst (b0215) 1999; 49
Lakshmi, Sharath, Chandraprabha, Neelufar, Hazra, Patra (b0025) 2012; 3
Caceres, Menendez, Mendez, Cohobon, Samayoa, Jauregui, Peralta, Carrillo (b0170) 1995; 48
Ayeshamariam, Kashif, Vidhya, Sankaracharyulu, Swaminathan, Bououdina, Jayachandran (b0105) 2014; 6
Sangeetha, Rajeshwari, Venckatesh (b0100) 2011; 46
Dwivedi, Wahab, Khan, Mishra, Musarrat (b0130) 2014; 9
Horie, Nishiok, Fujit (b0060) 2009; 22
Wahab, Khan, Dwivedi, Ahamed, Musarrat, Al-Khedhairy (b0125) 2013; 111
Kumar, Pandey, Singh, Shanker, Dhawan (b0145) 2011; 83
Ansari, Khan, Alzohairy, Jalal, Ali, Pal, Musarrat (b0115) 2015; 31
Logeswari, Silambarasan, Abraham (b0015) 2013; 20
Khan, Ahmed, Alhadlaq, Musarrat, Khaidhairy (b0140) 2013; 58
Look (b9000) 2001; 80
Zhang, Yang, Kong, Wang, Pandoli, Gao (b0030) 2010; 2
Possel, Noack, Augustin, Keilhoff, Wolf (b0225) 1997; 416
Akiyama, Fujii, Yamasaki, Oono, Iwatsuki (b0205) 2001; 48
Silva, Zaniquelli (b0195) 2002; 198–200
V.K. Shukla, S. Pandey, A.C. Pandey, Green synthesis of silver nanoparticles using neem leaf
Ali, Ahmed, Dwivedi, Saquib, Al-Khedhairy, Musarrat (b0120) 2015; 10
Venkataraju, Sharath, Chandraprabha, Neelufar, Hazra, Patra (b0095) 2012; 3
Khan, Ahamed, Al-Khedhairy, Musarrat (b0135) 2013; 97
Smitha, Nissamudeen, Philip, Gopchandran (b0155) 2008
Chandran, Chaudhary, Pasricha, Ahmad, Sastry (b0090) 2006; 22
Gnanasangeetha, Thambavani (b0020) 2013; 1
Agarry, Olaleye, Michael (b0065) 2005; 4
Zhang, Jiang, Ding, Povey, York (b0220) 2007; 9
Tavares (b0235) 2011; 286
Kwon, Kim, Lim, Shim (b0190) 2002; 3
Shelton (b0210) 1991; 30
Sosa, Noguez, Barrera (b0160) 2003; 107
Namratha, Monica (b0180) 2013; 3
Feng, Wu, Chen, Cui, Kim, Kim (b0085) 2000; 52
Li, Wang, Liu, Yang, Xu, Li, Cui (b0200) 2004; 77
Patterson (b0110) 1939; 56
Vázquez, Avila, Segura, Escalante (b0080) 1996; 55
Caceres, Lopez, Giron, Logemann (b0165) 1991; 31
Okafor (10.1016/j.jcis.2016.03.021_b0040) 2013; 10
Silva (10.1016/j.jcis.2016.03.021_b0195) 2002; 198–200
Tomczak (10.1016/j.jcis.2016.03.021_b0055) 2009; 5
Possel (10.1016/j.jcis.2016.03.021_b0225) 1997; 416
Vázquez (10.1016/j.jcis.2016.03.021_b0080) 1996; 55
Kumar (10.1016/j.jcis.2016.03.021_b0145) 2011; 83
Logeswari (10.1016/j.jcis.2016.03.021_b0015) 2013; 20
Venkataraju (10.1016/j.jcis.2016.03.021_b0095) 2012; 3
Tiwari (10.1016/j.jcis.2016.03.021_b0050) 2008; 3
Dwivedi (10.1016/j.jcis.2016.03.021_b0130) 2014; 9
Shelton (10.1016/j.jcis.2016.03.021_b0210) 1991; 30
Smitha (10.1016/j.jcis.2016.03.021_b0155) 2008
Sangeetha (10.1016/j.jcis.2016.03.021_b0100) 2011; 46
Chandran (10.1016/j.jcis.2016.03.021_b0090) 2006; 22
Tavares (10.1016/j.jcis.2016.03.021_b0235) 2011; 286
Barnes (10.1016/j.jcis.2016.03.021_b0070) 1996
Nagarajan (10.1016/j.jcis.2016.03.021_b0150) 2013; 11
Li (10.1016/j.jcis.2016.03.021_b0200) 2004; 77
Ayeshamariam (10.1016/j.jcis.2016.03.021_b0105) 2014; 6
Khan (10.1016/j.jcis.2016.03.021_b0140) 2013; 58
Kwon (10.1016/j.jcis.2016.03.021_b0190) 2002; 3
Sahu (10.1016/j.jcis.2016.03.021_b0010) 2013; 4
Davis (10.1016/j.jcis.2016.03.021_b0075) 1994; 84
Khan (10.1016/j.jcis.2016.03.021_b0135) 2013; 97
Ali (10.1016/j.jcis.2016.03.021_b0120) 2015; 10
Tachikawa (10.1016/j.jcis.2016.03.021_b0005) 2011; 4
Ernst (10.1016/j.jcis.2016.03.021_b0215) 1999; 49
Caceres (10.1016/j.jcis.2016.03.021_b0165) 1991; 31
Jha (10.1016/j.jcis.2016.03.021_b0035) 2009; 73
Caceres (10.1016/j.jcis.2016.03.021_b0170) 1995; 48
Su (10.1016/j.jcis.2016.03.021_b0230) 2009; 30
Lakshmi (10.1016/j.jcis.2016.03.021_b0025) 2012; 3
Horie (10.1016/j.jcis.2016.03.021_b0060) 2009; 22
Feng (10.1016/j.jcis.2016.03.021_b0085) 2000; 52
Sosa (10.1016/j.jcis.2016.03.021_b0160) 2003; 107
Akiyama (10.1016/j.jcis.2016.03.021_b0205) 2001; 48
Look (10.1016/j.jcis.2016.03.021_b9000) 2001; 80
Zhang (10.1016/j.jcis.2016.03.021_b0030) 2010; 2
Agarry (10.1016/j.jcis.2016.03.021_b0065) 2005; 4
Namratha (10.1016/j.jcis.2016.03.021_b0180) 2013; 3
Lalitha (10.1016/j.jcis.2016.03.021_b0185) 2013; 2
Gnanasangeetha (10.1016/j.jcis.2016.03.021_b0020) 2013; 1
Zhang (10.1016/j.jcis.2016.03.021_b0220) 2007; 9
Wahab (10.1016/j.jcis.2016.03.021_b0125) 2013; 111
Patterson (10.1016/j.jcis.2016.03.021_b0110) 1939; 56
Ansari (10.1016/j.jcis.2016.03.021_b0115) 2015; 31
10.1016/j.jcis.2016.03.021_b0175
References_xml – volume: 80
  start-page: 383
  year: 2001
  end-page: 387
  ident: b9000
  article-title: Recent advances in ZnO materials and devices
  publication-title: Mat. Sci. Eng.
– volume: 31
  start-page: 153
  year: 2015
  end-page: 164
  ident: b0115
  article-title: Green synthesis of Al
  publication-title: World J. Microbiol. Biotechnol.
– volume: 111
  start-page: 211
  year: 2013
  end-page: 217
  ident: b0125
  article-title: Effective inhibition of bacterial respiration and growth by CuO microspheres composed of thin nanosheets
  publication-title: Colloids Surf. B: Biointerfaces
– volume: 9
  start-page: 111289
  year: 2014
  ident: b0130
  article-title: Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination
  publication-title: PLoS ONE
– volume: 22
  start-page: 577
  year: 2006
  end-page: 583
  ident: b0090
  article-title: Synthesis of gold nanotriangles and silver nanoparticles using
  publication-title: Biotechnol. Prog.
– volume: 5
  start-page: 876
  year: 2009
  end-page: 882
  ident: b0055
  article-title: Morphological control and assembly of Zinc oxide using biotemplat
  publication-title: Acta Biomater.
– volume: 198–200
  start-page: 551
  year: 2002
  end-page: 558
  ident: b0195
  article-title: Morphology of nanometric size particulate aluminium doped zinc oxide films
  publication-title: Colliods Surf. A – Physicochem. Eng. Asp.
– volume: 4
  start-page: 3
  year: 2013
  ident: b0010
  article-title: Nanotechnology in herbal medicines and cosmetics
  publication-title: Int. Res. Ayurveda Pharma.
– volume: 6
  start-page: 85
  year: 2014
  end-page: 99
  ident: b0105
  article-title: Biosynthesis of (ZnO–aloe vera) nanocomposites and antibacterial/antifungal studies
  publication-title: J. Optoelect. Biomed. Mater.
– volume: 1
  start-page: 1
  year: 2013
  end-page: 8
  ident: b0020
  article-title: One pot synthesis of zinc oxide nanoparticles via chemical and green method
  publication-title: Res. J. Mater. Sci.
– volume: 3
  start-page: 170
  year: 2013
  end-page: 174
  ident: b0180
  article-title: Synthesis of silver nanoparticles using Azadirachta indica (Neem) extract and usage in water purification
  publication-title: Asian J. Pharm. Technol.
– volume: 11
  start-page: 39
  year: 2013
  ident: b0150
  article-title: Extracellular synthesis of zinc oxide nanoparticles using seaweeds of gulf of Mannar, India
  publication-title: J. Nanobiotechnol.
– volume: 286
  start-page: 2670
  year: 2011
  end-page: 2671
  ident: b0235
  article-title: Reactive oxygen species mediate bactericidal killing elicited by carbon monoxide-releasing molecules
  publication-title: J. Biol. Chem.
– volume: 55
  start-page: 69
  year: 1996
  end-page: 75
  ident: b0080
  article-title: Anti-inflammatory activity of extracts from
  publication-title: J. Ethnopharmacol.
– volume: 49
  start-page: 823
  year: 1999
  end-page: 828
  ident: b0215
  article-title: : a systematic review of its clinical effectiveness
  publication-title: Br. J. Gen. Pract.
– volume: 20
  start-page: 1049
  year: 2013
  end-page: 1054
  ident: b0015
  article-title: Eco friendly synthesis of silver nanoparticles from commercially available plant powders and their antibacterial properties
  publication-title: Scientia. Iranica. Transactions F: Nanotechnol.
– volume: 48
  start-page: 487
  year: 2001
  end-page: 491
  ident: b0205
  article-title: Antibacterial action of several tannins against
  publication-title: J. Antimicrob. Chemother.
– reference: ) extract. In: Proceedings of International Conference On Advanced Nanomaterials And Nanotechnology. ICANN‐2009, Guwahati, Assam (India), 9–11 December (2009), 2010.
– volume: 2
  start-page: 228
  year: 2013
  end-page: 235
  ident: b0185
  article-title: Green synthesis of silver nanoparticles from leaf extract
  publication-title: Int. J. Curr. Microbiol. App. Sci.
– volume: 30
  start-page: 679
  year: 1991
  end-page: 683
  ident: b0210
  article-title: , its chemical and therapeutic properties
  publication-title: Int. J. Dermatol.
– volume: 48
  start-page: 85
  year: 1995
  ident: b0170
  article-title: Antigonorrhoeal activity of plants used in Guatemala for the treatment of sexually transmitted diseases
  publication-title: J. Ethnopharmacol.
– reference: V.K. Shukla, S. Pandey, A.C. Pandey, Green synthesis of silver nanoparticles using neem leaf (
– volume: 77
  start-page: 57
  year: 2004
  end-page: 62
  ident: b0200
  article-title: Sol–gel preparation of transparent zinc oxide films with highly preferential crystal orientation
  publication-title: Vacuum
– volume: 84
  start-page: 77
  year: 1994
  end-page: 81
  ident: b0075
  article-title: Anti-inflammatory and wound healing activity of a growth substance in
  publication-title: J. Am. Podiatr. Med. Assoc.
– volume: 4
  start-page: 1132
  year: 2011
  end-page: 1143
  ident: b0005
  article-title: Optical properties of ZnO nanoparticles capped with polymers
  publication-title: Materials
– volume: 46
  start-page: 2560
  year: 2011
  end-page: 2566
  ident: b0100
  article-title: Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: structure and optical properties
  publication-title: Mater. Res. Bull.
– volume: 3
  start-page: 417
  year: 2008
  end-page: 433
  ident: b0050
  article-title: Application of nanoparticles in waste water treatment
  publication-title: World Appl. Sci. J.
– volume: 30
  start-page: 5979
  year: 2009
  end-page: 5987
  ident: b0230
  article-title: The disruption of bacterial membrane integrity through ROS generation induced by nano hybrids of silver and clay
  publication-title: Biomaterials
– start-page: 186
  year: 2008
  ident: b0155
  article-title: Studies on surface plasmon resonance and photoluminescence of silver nanoparticles
  publication-title: Spectrochim. Acta A
– volume: 22
  start-page: 543
  year: 2009
  end-page: 553
  ident: b0060
  article-title: Protein adsorption of ultra fine metal oxide and its influence on cytotoxicity toward cultural cell
  publication-title: Chem. Res. Toxicol.
– volume: 52
  start-page: 662
  year: 2000
  end-page: 668
  ident: b0085
  article-title: A mechanistic study of the antibacterial effect of silver ions on
  publication-title: J. Biomed. Mater. Res. Part A
– volume: 4
  start-page: 1413
  year: 2005
  end-page: 1414
  ident: b0065
  article-title: Comparative antimicrobial activities of
  publication-title: Afr. J. Biotechnol.
– volume: 83
  start-page: 1124
  year: 2011
  end-page: 1132
  ident: b0145
  article-title: Cellular uptake and mutagenic potential of metal oxide nanoparticles in bacterial cells
  publication-title: Chemosphere
– volume: 3
  start-page: 151
  year: 2012
  end-page: 154
  ident: b0025
  article-title: Synthesis, characterization and evaluation of antimicrobial activity of zinc oxide nanoparticles
  publication-title: J. Biochem. Technol.
– volume: 56
  start-page: 978
  year: 1939
  ident: b0110
  article-title: The Scherrer Formula for X-ray particle size determination
  publication-title: Phys. Rev.
– start-page: 296
  year: 1996
  ident: b0070
  article-title: A guide for health-care for health-care professionals
  publication-title: Herbal Med.
– volume: 73
  start-page: 219
  year: 2009
  end-page: 223
  ident: b0035
  article-title: Plant system: natures nanofactory
  publication-title: Colloids Surf. B: Biointerfaces
– volume: 10
  start-page: 5221
  year: 2013
  end-page: 5238
  ident: b0040
  article-title: Green synthesis of silver nanoparticles, their characterization, application and antibacterial activity
  publication-title: Int. J. Environ. Res. Public Health
– volume: 3
  start-page: S151
  year: 2012
  end-page: S154
  ident: b0095
  article-title: Synthesis, characterization and evaluation of antimicrobial activity of zinc oxide nanoparticles
  publication-title: J. Biochem. Technol.
– volume: 10
  start-page: e0131178
  year: 2015
  ident: b0120
  article-title: Microwave accelerated green synthesis of stable silver nanoparticles with eucalyptus globulus leaf extract and their antibacterial and antibiofilm activity on clinical isolates
  publication-title: PLoS ONE
– volume: 97
  start-page: 67
  year: 2013
  end-page: 70
  ident: b0135
  article-title: Biocidal effect of copper and zinc oxide nanoparticles on human oral microbiome and biofilm formation
  publication-title: Mater. Lett.
– volume: 107
  start-page: 6269
  year: 2003
  ident: b0160
  article-title: Optical properties of metal nanoparticles with arbitrary Shapes
  publication-title: J. Phys. Chem. B
– volume: 31
  start-page: 263
  year: 1991
  end-page: 276
  ident: b0165
  article-title: Plants used in Guatemala for the treatment of dermatophytic infections. 1. Screening for antimycotic activity of 44 plant extracts
  publication-title: J. Ethnopharmacol.
– volume: 9
  start-page: 479
  year: 2007
  ident: b0220
  article-title: Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids)
  publication-title: J. Nanopart. Res.
– volume: 2
  start-page: 252
  year: 2010
  end-page: 257
  ident: b0030
  article-title: Synergetic antibacterial effects of silver nanoparticles
  publication-title: Nano. Biomed. Eng.
– volume: 58
  start-page: 1804
  year: 2013
  end-page: 1811
  ident: b0140
  article-title: Comparative effectiveness of NiCl
  publication-title: Arch. Oral Biol.
– volume: 416
  start-page: 175
  year: 1997
  end-page: 178
  ident: b0225
  article-title: 2,7 Dihydrodichlorofluorescein diacetate as a fluorescent marker for peroxynitrite formation
  publication-title: FEBS Lett.
– volume: 3
  start-page: 146
  year: 2002
  end-page: 149
  ident: b0190
  article-title: Characterization of ZnO nanopowders synthesized by the polymerized complex method via an organo chemical route
  publication-title: J. Ceram. Proc. Res.
– volume: 20
  start-page: 1049
  year: 2013
  ident: 10.1016/j.jcis.2016.03.021_b0015
  article-title: Eco friendly synthesis of silver nanoparticles from commercially available plant powders and their antibacterial properties
  publication-title: Scientia. Iranica. Transactions F: Nanotechnol.
– volume: 10
  start-page: e0131178
  year: 2015
  ident: 10.1016/j.jcis.2016.03.021_b0120
  article-title: Microwave accelerated green synthesis of stable silver nanoparticles with eucalyptus globulus leaf extract and their antibacterial and antibiofilm activity on clinical isolates
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0131178
– volume: 48
  start-page: 85
  year: 1995
  ident: 10.1016/j.jcis.2016.03.021_b0170
  article-title: Antigonorrhoeal activity of plants used in Guatemala for the treatment of sexually transmitted diseases
  publication-title: J. Ethnopharmacol.
  doi: 10.1016/0378-8741(95)01288-O
– volume: 83
  start-page: 1124
  year: 2011
  ident: 10.1016/j.jcis.2016.03.021_b0145
  article-title: Cellular uptake and mutagenic potential of metal oxide nanoparticles in bacterial cells
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2011.01.025
– volume: 31
  start-page: 153
  year: 2015
  ident: 10.1016/j.jcis.2016.03.021_b0115
  article-title: Green synthesis of Al2O3 nanoparticles and their bactericidal potential against clinical isolates of multi-drug resistant Pseudomonas aeruginosa
  publication-title: World J. Microbiol. Biotechnol.
  doi: 10.1007/s11274-014-1757-2
– volume: 9
  start-page: 111289
  year: 2014
  ident: 10.1016/j.jcis.2016.03.021_b0130
  article-title: Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0111289
– volume: 22
  start-page: 577
  year: 2006
  ident: 10.1016/j.jcis.2016.03.021_b0090
  article-title: Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract
  publication-title: Biotechnol. Prog.
  doi: 10.1021/bp0501423
– volume: 11
  start-page: 39
  year: 2013
  ident: 10.1016/j.jcis.2016.03.021_b0150
  article-title: Extracellular synthesis of zinc oxide nanoparticles using seaweeds of gulf of Mannar, India
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/1477-3155-11-39
– volume: 49
  start-page: 823
  year: 1999
  ident: 10.1016/j.jcis.2016.03.021_b0215
  article-title: Aloe vera: a systematic review of its clinical effectiveness
  publication-title: Br. J. Gen. Pract.
– volume: 107
  start-page: 6269
  year: 2003
  ident: 10.1016/j.jcis.2016.03.021_b0160
  article-title: Optical properties of metal nanoparticles with arbitrary Shapes
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0274076
– volume: 3
  start-page: 417
  year: 2008
  ident: 10.1016/j.jcis.2016.03.021_b0050
  article-title: Application of nanoparticles in waste water treatment
  publication-title: World Appl. Sci. J.
– ident: 10.1016/j.jcis.2016.03.021_b0175
  doi: 10.1063/1.3504340
– volume: 286
  start-page: 2670
  year: 2011
  ident: 10.1016/j.jcis.2016.03.021_b0235
  article-title: Reactive oxygen species mediate bactericidal killing elicited by carbon monoxide-releasing molecules
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.255752
– volume: 31
  start-page: 263
  year: 1991
  ident: 10.1016/j.jcis.2016.03.021_b0165
  article-title: Plants used in Guatemala for the treatment of dermatophytic infections. 1. Screening for antimycotic activity of 44 plant extracts
  publication-title: J. Ethnopharmacol.
  doi: 10.1016/0378-8741(91)90011-2
– volume: 48
  start-page: 487
  year: 2001
  ident: 10.1016/j.jcis.2016.03.021_b0205
  article-title: Antibacterial action of several tannins against Staphylococcus aureus
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/48.4.487
– volume: 4
  start-page: 1132
  year: 2011
  ident: 10.1016/j.jcis.2016.03.021_b0005
  article-title: Optical properties of ZnO nanoparticles capped with polymers
  publication-title: Materials
  doi: 10.3390/ma4061132
– volume: 198–200
  start-page: 551
  year: 2002
  ident: 10.1016/j.jcis.2016.03.021_b0195
  article-title: Morphology of nanometric size particulate aluminium doped zinc oxide films
  publication-title: Colliods Surf. A – Physicochem. Eng. Asp.
  doi: 10.1016/S0927-7757(01)00959-1
– volume: 3
  start-page: 146
  year: 2002
  ident: 10.1016/j.jcis.2016.03.021_b0190
  article-title: Characterization of ZnO nanopowders synthesized by the polymerized complex method via an organo chemical route
  publication-title: J. Ceram. Proc. Res.
– volume: 30
  start-page: 5979
  year: 2009
  ident: 10.1016/j.jcis.2016.03.021_b0230
  article-title: The disruption of bacterial membrane integrity through ROS generation induced by nano hybrids of silver and clay
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.07.030
– volume: 1
  start-page: 1
  issue: 7
  year: 2013
  ident: 10.1016/j.jcis.2016.03.021_b0020
  article-title: One pot synthesis of zinc oxide nanoparticles via chemical and green method
  publication-title: Res. J. Mater. Sci.
– volume: 4
  start-page: 1413
  year: 2005
  ident: 10.1016/j.jcis.2016.03.021_b0065
  article-title: Comparative antimicrobial activities of Aloe vera gel and leaf
  publication-title: Afr. J. Biotechnol.
– start-page: 186
  year: 2008
  ident: 10.1016/j.jcis.2016.03.021_b0155
  article-title: Studies on surface plasmon resonance and photoluminescence of silver nanoparticles
  publication-title: Spectrochim. Acta A
  doi: 10.1016/j.saa.2007.12.002
– volume: 6
  start-page: 85
  year: 2014
  ident: 10.1016/j.jcis.2016.03.021_b0105
  article-title: Biosynthesis of (ZnO–aloe vera) nanocomposites and antibacterial/antifungal studies
  publication-title: J. Optoelect. Biomed. Mater.
– volume: 22
  start-page: 543
  year: 2009
  ident: 10.1016/j.jcis.2016.03.021_b0060
  article-title: Protein adsorption of ultra fine metal oxide and its influence on cytotoxicity toward cultural cell
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/tx800289z
– volume: 4
  start-page: 3
  year: 2013
  ident: 10.1016/j.jcis.2016.03.021_b0010
  article-title: Nanotechnology in herbal medicines and cosmetics
  publication-title: Int. Res. Ayurveda Pharma.
– volume: 84
  start-page: 77
  year: 1994
  ident: 10.1016/j.jcis.2016.03.021_b0075
  article-title: Anti-inflammatory and wound healing activity of a growth substance in Aloe vera
  publication-title: J. Am. Podiatr. Med. Assoc.
  doi: 10.7547/87507315-84-2-77
– volume: 10
  start-page: 5221
  year: 2013
  ident: 10.1016/j.jcis.2016.03.021_b0040
  article-title: Green synthesis of silver nanoparticles, their characterization, application and antibacterial activity
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph10105221
– volume: 5
  start-page: 876
  year: 2009
  ident: 10.1016/j.jcis.2016.03.021_b0055
  article-title: Morphological control and assembly of Zinc oxide using biotemplat
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2008.11.011
– volume: 9
  start-page: 479
  year: 2007
  ident: 10.1016/j.jcis.2016.03.021_b0220
  article-title: Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids)
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-006-9150-1
– volume: 55
  start-page: 69
  year: 1996
  ident: 10.1016/j.jcis.2016.03.021_b0080
  article-title: Anti-inflammatory activity of extracts from Aloe vera gel
  publication-title: J. Ethnopharmacol.
  doi: 10.1016/S0378-8741(96)01476-6
– volume: 52
  start-page: 662
  year: 2000
  ident: 10.1016/j.jcis.2016.03.021_b0085
  article-title: A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus
  publication-title: J. Biomed. Mater. Res. Part A
  doi: 10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3
– volume: 58
  start-page: 1804
  year: 2013
  ident: 10.1016/j.jcis.2016.03.021_b0140
  article-title: Comparative effectiveness of NiCl2, Ni- and NiO-NPs in controlling oral bacterial growth and biofilm formation on oral surfaces
  publication-title: Arch. Oral Biol.
  doi: 10.1016/j.archoralbio.2013.09.011
– volume: 2
  start-page: 252
  year: 2010
  ident: 10.1016/j.jcis.2016.03.021_b0030
  article-title: Synergetic antibacterial effects of silver nanoparticles Aloe Vera prepared via a green method
  publication-title: Nano. Biomed. Eng.
  doi: 10.5101/nbe.v2i4.p252-257
– volume: 416
  start-page: 175
  year: 1997
  ident: 10.1016/j.jcis.2016.03.021_b0225
  article-title: 2,7 Dihydrodichlorofluorescein diacetate as a fluorescent marker for peroxynitrite formation
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(97)01197-6
– volume: 111
  start-page: 211
  year: 2013
  ident: 10.1016/j.jcis.2016.03.021_b0125
  article-title: Effective inhibition of bacterial respiration and growth by CuO microspheres composed of thin nanosheets
  publication-title: Colloids Surf. B: Biointerfaces
  doi: 10.1016/j.colsurfb.2013.06.003
– volume: 30
  start-page: 679
  year: 1991
  ident: 10.1016/j.jcis.2016.03.021_b0210
  article-title: Aloe vera, its chemical and therapeutic properties
  publication-title: Int. J. Dermatol.
  doi: 10.1111/j.1365-4362.1991.tb02607.x
– volume: 80
  start-page: 383
  year: 2001
  ident: 10.1016/j.jcis.2016.03.021_b9000
  article-title: Recent advances in ZnO materials and devices
  publication-title: Mat. Sci. Eng.
  doi: 10.1016/S0921-5107(00)00604-8
– volume: 56
  start-page: 978
  year: 1939
  ident: 10.1016/j.jcis.2016.03.021_b0110
  article-title: The Scherrer Formula for X-ray particle size determination
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.56.978
– volume: 46
  start-page: 2560
  year: 2011
  ident: 10.1016/j.jcis.2016.03.021_b0100
  article-title: Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: structure and optical properties
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2011.07.046
– volume: 97
  start-page: 67
  year: 2013
  ident: 10.1016/j.jcis.2016.03.021_b0135
  article-title: Biocidal effect of copper and zinc oxide nanoparticles on human oral microbiome and biofilm formation
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2013.01.085
– start-page: 296
  year: 1996
  ident: 10.1016/j.jcis.2016.03.021_b0070
  article-title: A guide for health-care for health-care professionals
  publication-title: Herbal Med.
– volume: 3
  start-page: S151
  year: 2012
  ident: 10.1016/j.jcis.2016.03.021_b0095
  article-title: Synthesis, characterization and evaluation of antimicrobial activity of zinc oxide nanoparticles
  publication-title: J. Biochem. Technol.
– volume: 3
  start-page: 151
  year: 2012
  ident: 10.1016/j.jcis.2016.03.021_b0025
  article-title: Synthesis, characterization and evaluation of antimicrobial activity of zinc oxide nanoparticles
  publication-title: J. Biochem. Technol.
– volume: 73
  start-page: 219
  year: 2009
  ident: 10.1016/j.jcis.2016.03.021_b0035
  article-title: Plant system: natures nanofactory
  publication-title: Colloids Surf. B: Biointerfaces
  doi: 10.1016/j.colsurfb.2009.05.018
– volume: 3
  start-page: 170
  year: 2013
  ident: 10.1016/j.jcis.2016.03.021_b0180
  article-title: Synthesis of silver nanoparticles using Azadirachta indica (Neem) extract and usage in water purification
  publication-title: Asian J. Pharm. Technol.
– volume: 2
  start-page: 228
  year: 2013
  ident: 10.1016/j.jcis.2016.03.021_b0185
  article-title: Green synthesis of silver nanoparticles from leaf extract Azadirachta indica and to study its anti-bacterial and antioxidant property
  publication-title: Int. J. Curr. Microbiol. App. Sci.
– volume: 77
  start-page: 57
  year: 2004
  ident: 10.1016/j.jcis.2016.03.021_b0200
  article-title: Sol–gel preparation of transparent zinc oxide films with highly preferential crystal orientation
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2004.08.003
SSID ssj0011559
Score 2.627425
Snippet [Display omitted] ZnO nanoparticles (ZnONPs) were synthesised through a simple and efficient biogenic synthesis approach, exploiting the reducing and capping...
ZnO nanoparticles (ZnONPs) were synthesised through a simple and efficient biogenic synthesis approach, exploiting the reducing and capping potential of Aloe...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 145
SubjectTerms Aloe
Aloe vera
Anti-Bacterial Agents - chemistry
Anti-Bacterial Agents - pharmacology
antibacterial properties
antibiotics
atomic absorption spectrometry
Bacteria
beta-lactamase
biofilm
Biofilm inhibition
Biofilms - drug effects
Biogenic synthesis
cost effectiveness
drug carriers
energy-dispersive X-ray analysis
Escherichia coli
Escherichia coli - drug effects
Escherichia coli - physiology
Escherichia coli Infections - drug therapy
exopolysaccharides
flow cytometry
Fourier transform infrared spectroscopy
Green Chemistry Technology
growth models
Humans
Infrared spectroscopy
leaf extracts
methicillin-resistant Staphylococcus aureus
Methicillin-Resistant Staphylococcus aureus - drug effects
Methicillin-Resistant Staphylococcus aureus - physiology
microbial growth
Microbial Sensitivity Tests
multiple drug resistance
Nanoparticles
Nanoparticles - chemistry
Oxidation-Reduction
phenolic compounds
Plant Extracts - chemistry
proteins
Pseudomonas aeruginosa
Scanning electron microscopy
spectral analysis
Staphylococcal Infections - drug therapy
Staphylococcus aureus - drug effects
Staphylococcus aureus - physiology
Synthesis
terpenoids
Transmission electron microscopy
ultraviolet-visible spectroscopy
X-ray diffraction
Zinc oxide
Zinc Oxide - chemistry
Zinc Oxide - pharmacology
ZnO nanoparticles
Title Aloe vera extract functionalized zinc oxide nanoparticles as nanoantibiotics against multi-drug resistant clinical bacterial isolates
URI https://dx.doi.org/10.1016/j.jcis.2016.03.021
https://www.ncbi.nlm.nih.gov/pubmed/27031596
https://www.proquest.com/docview/1780512786
https://www.proquest.com/docview/1816074988
https://www.proquest.com/docview/1846410352
https://www.proquest.com/docview/2116940566
Volume 472
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcgAOCMqj5VEZiRsyrR3Hj-NqRbWA6IlKvVl-pXJVJVW7K6Eeeuv_ZiaPFRx2D9ySaKIknsn4c_LNN4R8Uk30PHDBUlVVTNocmQ1Js5hTVsfWWN-TaH6eqsWZ_H5en--Q-VQLg7TKMfcPOb3P1uORo3E0j65LwRpfeNs0SiBBkKq-llpKjfr5X-7XNA-Ov90GmgdnaD0Wzgwcr8tYULKbq17oVPBNk9Mm8NlPQifPybMRPdLZcIMvyE5u98jj-dS0bY88_Utf8CV5mF11mUKwego5GOuhKM5jw-e_cpcTvSttpN3vkjJtfQsL6JEnR_1tfwDGvYTSoZYz9Re-AJikPQeRpZvVBYW1OuLPdkmnCksaBvln2CoQ1ohkX5Gzk6-_5gs29l1gUVqxZLBgrkTV-JB5iLVRMWkRY1KQHUzKIUjPlQUYJYVvkq-Dzk2jQoo1D6lusqhek922a_M-odqb5D2gNI1QQecAaAggoDFSZGUDPyB8GnAXR1Fy7I1x5Sb22aVDJzl0kjuuHDjpgHxen3M9SHJsta4nP7p_AsvBnLH1vI-T0x34EH-j-DZ3q1vHsQ0EF9qoLTYGhfukNWabjVSSox7tZhtYnsNQA0iFa70ZIm_9zAJbD9RWvf3PJ3xHnuAe8t54_Z7sLm9W-QMgrGU47F-hQ_Jo9u3H4vQPicgomw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQHGgPFaUP6NOVeqsssOM4znG1KloK7AkkbpZfQUYoQbArVdz7vzuTOCt62D30Fjm2Ensm42_imW8I-a4ab7njgoWiKJiso2e1CxXzMUR1XOva9kE0F3M1u5K_rsvrLTIdc2EwrDLb_sGm99Y6txzl1Ty6TwlzfOFrq5ACCZRUYS71DrJTgbLvTE7PZvPVYQKevA2RHpzhgJw7M4R53fqErN1c9Vyngq_bn9bhz34fOtkjrzKApJPhHV-Trdjuk93pWLdtn7x8RjH4hvyZ3HWRgr5aCmYYU6IobmXDH8D0FAN9Sq2n3e8UIm1tCz50DpWj9rFvgKVPLnVI50ztjU2AJ2kfhsjCw_KGgruOELRd0DHJkrqBARquEmg2gtm35Ork5-V0xnLpBeZlLRYMfOZCFI11kTtfauVDJbwPCgyEDtE5abmqAUlJYZtgS1fFplEu-JK7UDZRFO_Idtu18YDQyupgLQC1CtFCFR0AIkCBWksRVe34IeHjghufecmxPMadGQPQbg0KyaCQzHFhQEiH5MdqzP3AyrGxdznK0fyjWwa2jY3jvo1CNyBDPEmxbeyWj4ZjJQguKq029NHI3SdrrTf1kUpypKRd3wc8dFhqwKnwrPeD5q3mLLD6QFmrD_85w69kd3Z5cW7OT-dnH8kLvINhcLz8RLYXD8v4GQDXwn3JH9RflTErTA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aloe+vera+extract+functionalized+zinc+oxide+nanoparticles+as+nanoantibiotics+against+multi-drug+resistant+clinical+bacterial+isolates&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Ali%2C+Khursheed&rft.au=Dwivedi%2C+Sourabh&rft.au=Azam%2C+Ameer&rft.au=Saquib%2C+Quaiser&rft.date=2016-06-15&rft.eissn=1095-7103&rft.volume=472&rft.spage=145&rft_id=info:doi/10.1016%2Fj.jcis.2016.03.021&rft_id=info%3Apmid%2F27031596&rft.externalDocID=27031596
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon