Machine learning approaches that use clinical, laboratory, and electrocardiogram data enhance the prediction of obstructive coronary artery disease

Pretest probability (PTP) for assessing obstructive coronary artery disease (ObCAD) was updated to reduce overestimation. However, standard laboratory findings and electrocardiogram (ECG) raw data as first-line tests have not been evaluated for integration into the PTP estimation. Therefore, this st...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 13; no. 1; p. 12635
Main Authors Lee, Hyun-Gyu, Park, Sang-Don, Bae, Jang-Whan, Moon, SungJoon, Jung, Chai Young, Kim, Mi-Sook, Kim, Tae-Hun, Lee, Won Kyung
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 03.08.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Pretest probability (PTP) for assessing obstructive coronary artery disease (ObCAD) was updated to reduce overestimation. However, standard laboratory findings and electrocardiogram (ECG) raw data as first-line tests have not been evaluated for integration into the PTP estimation. Therefore, this study developed an ensemble model by adopting machine learning (ML) and deep learning (DL) algorithms with clinical, laboratory, and ECG data for the assessment of ObCAD. Data were extracted from the electronic medical records of patients with suspected ObCAD who underwent coronary angiography. With the ML algorithm, 27 clinical and laboratory data were included to identify ObCAD, whereas ECG waveform data were utilized with the DL algorithm. The ensemble method combined the clinical-laboratory and ECG models. We included 7907 patients between 2008 and 2020. The clinical and laboratory model showed an area under the curve (AUC) of 0.747; the ECG model had an AUC of 0.685. The ensemble model demonstrated the highest AUC of 0.767. The sensitivity, specificity, and F1 score of the ensemble model ObCAD were 0.761, 0.625, and 0.696, respectively. It demonstrated good performance and superior prediction over traditional PTP models. This may facilitate personalized decisions for ObCAD assessment and reduce PTP overestimation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-39911-y