Integrative self-sorting of coordination cages based on 'naked' metal ions
Coordination-driven self-assembly of metal ions and organic ligands has been extensively utilised over the past four decades to access a variety of nano-sized cage assemblies, with functions ranging from sensing and catalysis to drug delivery. Many of the reported examples, however, are highly symme...
Saved in:
Published in | Chemical communications (Cambridge, England) Vol. 53; no. 61; pp. 856 - 8516 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
27.07.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Coordination-driven self-assembly of metal ions and organic ligands has been extensively utilised over the past four decades to access a variety of nano-sized cage assemblies, with functions ranging from sensing and catalysis to drug delivery. Many of the reported examples, however, are highly symmetric architectures that contain one type of organic ligand carrying not more than a single functionality. This contrasts significantly with the level of structural and functional complexity encountered in biological macromolecular hosts, which are able to bind and chemically convert smaller molecules in their highly-decorated internal cavities. To address this disparity, rational approaches that facilitate heteroleptic assembly by regulating integrative self-sorting of metal ions and multiple ligand components have emerged. Among these, routes to access coordination cages from 'naked' metal cations that offer more than two coordination sites are still in early development, as the complexity of the self-sorted products in terms of composition and stereochemistry presents an entropic challenge. This feature article highlights recent progress in controlling integrative self-sorting of multi-component cage systems with a focus on structures composed of 'naked' metal cations and two different ligands. Once heteroleptic self-assembly strategies find a wider implementation in supramolecular design, the resultant interplay between tailored combinations of precisely positioned substituents promises enhanced functionality in nanoscale structures.
In this review, we highlight recent approaches that facilitate integrative self-sorting of 'naked' metal ions and ligands to form multi-component, heteroleptic cage structures. |
---|---|
Bibliography: | Guido H. Clever is a Professor of Bioinorganic Chemistry at Technical University Dortmund. He studied chemistry in Heidelberg and received his PhD from LMU Munich under the supervision of Thomas Carell. From 2007 to 2010 he was an AvH/JSPS postdoctoral researcher and Assistant Professor in the group of Mitsuhiko Shionoya at the University of Tokyo. In 2010 he became a Junior Professor at the University of Göttingen, where he was appointed on a W2 tenured position in 2013. In 2015 he accepted a call on a Full Professorship at TU Dortmund. He was awarded the ADUC prize 2012 for young investigators and the Dozentenpreis of the FCI in 2015. His research on stimuli-responsive, multi-functional coordination cages is currently supported by an ERC consolidator grant. His further interests include metal-mediated DNA architectures. Witold M. Bloch obtained his PhD at the University of Adelaide in 2014 under the supervision of Christopher Sumby and Christian Doonan. In 2015, he received an Alexander von Humboldt fellowship which he commenced in Göttingen and is now continuing at TU Dortmund in the group Guido Clever. His research interests include porous nanomaterials and the rational design of multi-component cage structures. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1359-7345 1364-548X |
DOI: | 10.1039/c7cc03379f |