Towards standardising retinal OCT angiography image analysis with open-source toolbox OCTAVA
Quantitative assessment of retinal microvasculature in optical coherence tomography angiography (OCTA) images is important for studying, diagnosing, monitoring, and guiding the treatment of ocular and systemic diseases. However, the OCTA user community lacks universal and transparent image analysis...
Saved in:
Published in | Scientific reports Vol. 14; no. 1; p. 5979 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
12.03.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Quantitative assessment of retinal microvasculature in optical coherence tomography angiography (OCTA) images is important for studying, diagnosing, monitoring, and guiding the treatment of ocular and systemic diseases. However, the OCTA user community lacks universal and transparent image analysis tools that can be applied to images from a range of OCTA instruments and provide reliable and consistent microvascular metrics from diverse datasets. We present a retinal extension to the OCTA Vascular Analyser (OCTAVA) that addresses the challenges of providing robust, easy-to-use, and transparent analysis of retinal OCTA images. OCTAVA is a user-friendly, open-source toolbox that can analyse retinal OCTA images from various instruments. The toolbox delivers seven microvascular metrics for the whole image or subregions and six metrics characterising the foveal avascular zone. We validate OCTAVA using images collected by four commercial OCTA instruments demonstrating robust performance across datasets from different instruments acquired at different sites from different study cohorts. We show that OCTAVA delivers values for retinal microvascular metrics comparable to the literature and reduces their variation between studies compared to their commercial equivalents. By making OCTAVA publicly available, we aim to expand standardised research and thereby improve the reproducibility of quantitative analysis of retinal microvascular imaging. Such improvements will help to better identify more reliable and sensitive biomarkers of ocular and systemic diseases. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-024-53501-6 |