Self-assembled liquid crystalline nanoparticles as a novel ophthalmic delivery system for dexamethasone: Improving preocular retention and ocular bioavailability

The object of this study was to design novel self-assembled liquid crystalline nanoparticles (cubosomes) as an ophthalmic delivery system for dexamethasone (DEX) to improve its preocular retention and ocular bioavailability. DEX cubosome particles were produced by fragmenting a cubic crystalline pha...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of pharmaceutics Vol. 396; no. 1; pp. 179 - 187
Main Authors Gan, Li, Han, Shun, Shen, Jinqiu, Zhu, Jiabi, Zhu, Chunliu, Zhang, Xinxin, Gan, Yong
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 30.08.2010
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The object of this study was to design novel self-assembled liquid crystalline nanoparticles (cubosomes) as an ophthalmic delivery system for dexamethasone (DEX) to improve its preocular retention and ocular bioavailability. DEX cubosome particles were produced by fragmenting a cubic crystalline phase of monoolein and water in the presence of stabilizer Poloxamer 407. Small angle X-ray diffraction (SAXR) profiles revealed its internal structure as Pn3 m space group, indicating the diamond cubic phase. In vitro, the apparent permeability coefficient of DEX administered in cubosomes exhibited a 4.5-fold (F1) and 3.5-fold (F2) increase compared to that of Dex-Na phosphate eye drops. Preocular retention studies revealed that the retention of cubosomes was significantly longer than that of solution and carbopol gel, with AUC 0→180 min of Rh B cubosomes being 2–3-fold higher than that of the other two formulations. In vivo pharmacokinetics in aqueous humor was evaluated by microdialysis, which indicated a 1.8-fold (F1) increase in AUC 0→240 min of DEX administered in cubosomes relative to that of Dex-Na phosphate eye drops, with about an 8-fold increase compared to that of DEX suspension. Corneal cross-sections after incubation with DEX cubosomes demonstrated an unaffected corneal structure and tissue integrity, which indicated the good biocompatibility of DEX cubosomes. In conclusion, self-assembled liquid crystalline nanoparticles might represent a promising vehicle for effective ocular drug delivery.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0378-5173
1873-3476
DOI:10.1016/j.ijpharm.2010.06.015