A general strategy for the preparation of carbon nanotubes and graphene oxide decorated with PdO nanoparticles in water

The preparation of carbon nanotube (CNT)/PdO nanoparticles and graphene oxide (GO)/PdO nanoparticle hybrids via a general aqueous solution strategy is reported. The PdO nanoparticles are generated in situ on the CNTs and GO by a one-step "green" synthetic approach in aqueous Pd(NO(3))(2) s...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 15; no. 7; pp. 4679 - 4694
Main Authors He, Hongkun, Gao, Chao
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 02.07.2010
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The preparation of carbon nanotube (CNT)/PdO nanoparticles and graphene oxide (GO)/PdO nanoparticle hybrids via a general aqueous solution strategy is reported. The PdO nanoparticles are generated in situ on the CNTs and GO by a one-step "green" synthetic approach in aqueous Pd(NO(3))(2) solution under ambient conditions without adding any additional chemicals. The production of PdO is confirmed by energy dispersive X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, and thermal gravimetric analysis. The morphologies of the resulting CNT/PdO and GO/PdO nanohybrids are characterized by transmission and/or scanning transmission electron microscopy. PdO nanoparticles with an average size of 2-3 nm in diameter are decorated evenly along the surfaces of CNTs and GO. This synthesis strategy is demonstrated to be compatible for 1) CNTs with different modifications, including pristine, oxidized, and polymer-functionalized CNTs; 2) different types of CNTs, including single-walled carbon nanotubes (SWCNTs), double-walled carbon nanotubes (DWCNTs), and multiwalled carbon nanotubes (MWCNTs); and 3) different shapes of carbon materials, including tubular CNTs and planar GO. The as-prepared CNT/PdO and GO/PdO nanohybrids can be transformed into CNT/Pd and GO/Pd nanohybrids by reduction with NaBH(4), and can then be used as a heterogeneous catalyst in the catalytic reduction of 4-nitrophenol.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules15074679