Superior adsorption of phosphate by ferrihydrite-coated and lanthanum-decorated magnetite

[Display omitted] Present study reports the successful development of a novel lanthanum (La)-based magnetic adsorbent and its use for phosphate removal from water. For its synthesis, natural magnetite (Mag), Fe3O4, was subjected to partial dissolution in HCl solution and the obtained suspension was...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 530; pp. 704 - 713
Main Authors Fu, Haoyang, Yang, Yixuan, Zhu, Runliang, Liu, Jing, Usman, Muhammad, Chen, Qingze, He, Hongping
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.11.2018
Subjects
Online AccessGet full text
ISSN0021-9797
1095-7103
1095-7103
DOI10.1016/j.jcis.2018.07.025

Cover

Loading…
Abstract [Display omitted] Present study reports the successful development of a novel lanthanum (La)-based magnetic adsorbent and its use for phosphate removal from water. For its synthesis, natural magnetite (Mag), Fe3O4, was subjected to partial dissolution in HCl solution and the obtained suspension was mixed with an alkaline solution for in-situ synthesis of ferrihydrite (Fh)-coated Mag (Mag@Fh). Mag@Fh was then decorated with La (hydr)oxides followed by calcination to produce Fh-coated and La-decorated Mag (Mag@Fh-La). Obtained Mag@Fh-La represented high phosphate adsorption capacity (44.8 mg P/g at 15.7% La in its structure) and La usage efficiency. Moreover, Mag@Fh-La retained its high adsorption capacity (>35.0 mg P/g) over a wide range of equilibrium solution pH (3.2–10.7). The combination of FTIR, XPS analysis and adsorption experiments revealed that ligand exchange and electrostatic attraction were the main mechanisms that jointly facilitated the adsorption of phosphate. Adsorption-desorption cycle studies confirmed the well-retained adsorption efficiency of regenerated Mag@Fh-La for repeated applications. Final experiments with real domestic wastewater (initial phosphate concentration of 1.7 mg/L) revealed that 0.2 g/L Mag@Fh-La efficiently reduced the phosphate concentration to below 0.02 mg/L. Overall, this work clearly highlights that the synthesized novel adsorbent has promising applications in phosphate removal from real wastewater.
AbstractList Present study reports the successful development of a novel lanthanum (La)-based magnetic adsorbent and its use for phosphate removal from water. For its synthesis, natural magnetite (Mag), Fe₃O₄, was subjected to partial dissolution in HCl solution and the obtained suspension was mixed with an alkaline solution for in-situ synthesis of ferrihydrite (Fh)-coated Mag (Mag@Fh). Mag@Fh was then decorated with La (hydr)oxides followed by calcination to produce Fh-coated and La-decorated Mag (Mag@Fh-La). Obtained Mag@Fh-La represented high phosphate adsorption capacity (44.8 mg P/g at 15.7% La in its structure) and La usage efficiency. Moreover, Mag@Fh-La retained its high adsorption capacity (>35.0 mg P/g) over a wide range of equilibrium solution pH (3.2–10.7). The combination of FTIR, XPS analysis and adsorption experiments revealed that ligand exchange and electrostatic attraction were the main mechanisms that jointly facilitated the adsorption of phosphate. Adsorption-desorption cycle studies confirmed the well-retained adsorption efficiency of regenerated Mag@Fh-La for repeated applications. Final experiments with real domestic wastewater (initial phosphate concentration of 1.7 mg/L) revealed that 0.2 g/L Mag@Fh-La efficiently reduced the phosphate concentration to below 0.02 mg/L. Overall, this work clearly highlights that the synthesized novel adsorbent has promising applications in phosphate removal from real wastewater.
Present study reports the successful development of a novel lanthanum (La)-based magnetic adsorbent and its use for phosphate removal from water. For its synthesis, natural magnetite (Mag), Fe O , was subjected to partial dissolution in HCl solution and the obtained suspension was mixed with an alkaline solution for in-situ synthesis of ferrihydrite (Fh)-coated Mag (Mag@Fh). Mag@Fh was then decorated with La (hydr)oxides followed by calcination to produce Fh-coated and La-decorated Mag (Mag@Fh-La). Obtained Mag@Fh-La represented high phosphate adsorption capacity (44.8 mg P/g at 15.7% La in its structure) and La usage efficiency. Moreover, Mag@Fh-La retained its high adsorption capacity (>35.0 mg P/g) over a wide range of equilibrium solution pH (3.2-10.7). The combination of FTIR, XPS analysis and adsorption experiments revealed that ligand exchange and electrostatic attraction were the main mechanisms that jointly facilitated the adsorption of phosphate. Adsorption-desorption cycle studies confirmed the well-retained adsorption efficiency of regenerated Mag@Fh-La for repeated applications. Final experiments with real domestic wastewater (initial phosphate concentration of 1.7 mg/L) revealed that 0.2 g/L Mag@Fh-La efficiently reduced the phosphate concentration to below 0.02 mg/L. Overall, this work clearly highlights that the synthesized novel adsorbent has promising applications in phosphate removal from real wastewater.
Present study reports the successful development of a novel lanthanum (La)-based magnetic adsorbent and its use for phosphate removal from water. For its synthesis, natural magnetite (Mag), Fe3O4, was subjected to partial dissolution in HCl solution and the obtained suspension was mixed with an alkaline solution for in-situ synthesis of ferrihydrite (Fh)-coated Mag (Mag@Fh). Mag@Fh was then decorated with La (hydr)oxides followed by calcination to produce Fh-coated and La-decorated Mag (Mag@Fh-La). Obtained Mag@Fh-La represented high phosphate adsorption capacity (44.8 mg P/g at 15.7% La in its structure) and La usage efficiency. Moreover, Mag@Fh-La retained its high adsorption capacity (>35.0 mg P/g) over a wide range of equilibrium solution pH (3.2-10.7). The combination of FTIR, XPS analysis and adsorption experiments revealed that ligand exchange and electrostatic attraction were the main mechanisms that jointly facilitated the adsorption of phosphate. Adsorption-desorption cycle studies confirmed the well-retained adsorption efficiency of regenerated Mag@Fh-La for repeated applications. Final experiments with real domestic wastewater (initial phosphate concentration of 1.7 mg/L) revealed that 0.2 g/L Mag@Fh-La efficiently reduced the phosphate concentration to below 0.02 mg/L. Overall, this work clearly highlights that the synthesized novel adsorbent has promising applications in phosphate removal from real wastewater.Present study reports the successful development of a novel lanthanum (La)-based magnetic adsorbent and its use for phosphate removal from water. For its synthesis, natural magnetite (Mag), Fe3O4, was subjected to partial dissolution in HCl solution and the obtained suspension was mixed with an alkaline solution for in-situ synthesis of ferrihydrite (Fh)-coated Mag (Mag@Fh). Mag@Fh was then decorated with La (hydr)oxides followed by calcination to produce Fh-coated and La-decorated Mag (Mag@Fh-La). Obtained Mag@Fh-La represented high phosphate adsorption capacity (44.8 mg P/g at 15.7% La in its structure) and La usage efficiency. Moreover, Mag@Fh-La retained its high adsorption capacity (>35.0 mg P/g) over a wide range of equilibrium solution pH (3.2-10.7). The combination of FTIR, XPS analysis and adsorption experiments revealed that ligand exchange and electrostatic attraction were the main mechanisms that jointly facilitated the adsorption of phosphate. Adsorption-desorption cycle studies confirmed the well-retained adsorption efficiency of regenerated Mag@Fh-La for repeated applications. Final experiments with real domestic wastewater (initial phosphate concentration of 1.7 mg/L) revealed that 0.2 g/L Mag@Fh-La efficiently reduced the phosphate concentration to below 0.02 mg/L. Overall, this work clearly highlights that the synthesized novel adsorbent has promising applications in phosphate removal from real wastewater.
[Display omitted] Present study reports the successful development of a novel lanthanum (La)-based magnetic adsorbent and its use for phosphate removal from water. For its synthesis, natural magnetite (Mag), Fe3O4, was subjected to partial dissolution in HCl solution and the obtained suspension was mixed with an alkaline solution for in-situ synthesis of ferrihydrite (Fh)-coated Mag (Mag@Fh). Mag@Fh was then decorated with La (hydr)oxides followed by calcination to produce Fh-coated and La-decorated Mag (Mag@Fh-La). Obtained Mag@Fh-La represented high phosphate adsorption capacity (44.8 mg P/g at 15.7% La in its structure) and La usage efficiency. Moreover, Mag@Fh-La retained its high adsorption capacity (>35.0 mg P/g) over a wide range of equilibrium solution pH (3.2–10.7). The combination of FTIR, XPS analysis and adsorption experiments revealed that ligand exchange and electrostatic attraction were the main mechanisms that jointly facilitated the adsorption of phosphate. Adsorption-desorption cycle studies confirmed the well-retained adsorption efficiency of regenerated Mag@Fh-La for repeated applications. Final experiments with real domestic wastewater (initial phosphate concentration of 1.7 mg/L) revealed that 0.2 g/L Mag@Fh-La efficiently reduced the phosphate concentration to below 0.02 mg/L. Overall, this work clearly highlights that the synthesized novel adsorbent has promising applications in phosphate removal from real wastewater.
Author Yang, Yixuan
Liu, Jing
He, Hongping
Fu, Haoyang
Usman, Muhammad
Chen, Qingze
Zhu, Runliang
Author_xml – sequence: 1
  givenname: Haoyang
  surname: Fu
  fullname: Fu, Haoyang
  organization: CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Material, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
– sequence: 2
  givenname: Yixuan
  surname: Yang
  fullname: Yang, Yixuan
  organization: CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Material, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
– sequence: 3
  givenname: Runliang
  surname: Zhu
  fullname: Zhu, Runliang
  email: zhurl@gig.ac.cn
  organization: CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Material, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
– sequence: 4
  givenname: Jing
  surname: Liu
  fullname: Liu, Jing
  organization: CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Material, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
– sequence: 5
  givenname: Muhammad
  surname: Usman
  fullname: Usman, Muhammad
  organization: Environmental Mineralogy, Center for Applied Geosciences, University of Tübingen, 72074 Tübingen, Germany
– sequence: 6
  givenname: Qingze
  surname: Chen
  fullname: Chen, Qingze
  organization: CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Material, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
– sequence: 7
  givenname: Hongping
  orcidid: 0000-0002-7057-7687
  surname: He
  fullname: He, Hongping
  organization: CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Material, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30015156$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFu1DAQhi1URLeFF-CAcuSS4LHjOJG4oApopUocgAMnyzuesF5t4mA7SPv2eNn2wqGcPBp9_8j6_it2MYeZGHsNvAEO3bt9s0efGsGhb7huuFDP2Ab4oGoNXF6wDecC6kEP-pJdpbTnHECp4QW7lGVUoLoN-_F1XSj6ECvrUohL9mGuwlgtu5CWnc1UbY_VSDH63dFFn6nGULausrOrDnbOOzuvU-0IQ_y7n-zPmXIBX7Lnoz0kevXwXrPvnz5-u7mt7798vrv5cF9jO4hcAyfJqbWSUKPtpWi3Qraq6x2OILHjRP0g0UoNg6VWbp22iJaUkEILp-Q1e3u-u8Twa6WUzeQT0qF8jsKajADo-k62Rcl_Ua6LFNGDKOibB3TdTuTMEv1k49E8mitAfwYwhpQijQZ9tid9OVp_MMDNqSSzN6eSzKkkw7UpJZWo-Cf6eP3J0PtziIrL356iSehpRnI-Embjgn8q_gf4T6ui
CitedBy_id crossref_primary_10_1016_j_jece_2024_112571
crossref_primary_10_1016_j_jcis_2022_01_149
crossref_primary_10_1016_j_scitotenv_2022_154786
crossref_primary_10_1039_C8CC04642E
crossref_primary_10_1021_acs_jafc_3c00454
crossref_primary_10_1016_j_cej_2021_133166
crossref_primary_10_1016_j_colsurfa_2018_10_082
crossref_primary_10_1016_j_seppur_2024_128146
crossref_primary_10_1016_j_chemosphere_2023_138378
crossref_primary_10_1016_j_scitotenv_2020_137778
crossref_primary_10_1016_j_jclepro_2022_133345
crossref_primary_10_1007_s11270_024_07617_0
crossref_primary_10_1016_j_jallcom_2021_158670
crossref_primary_10_1016_j_horiz_2022_100011
crossref_primary_10_1016_j_colsurfa_2019_06_018
crossref_primary_10_2139_ssrn_3980081
crossref_primary_10_1016_j_cinorg_2025_100089
crossref_primary_10_1016_j_colsurfa_2020_125736
crossref_primary_10_1016_j_inoche_2020_108053
crossref_primary_10_1016_j_biortech_2020_124232
crossref_primary_10_1016_j_seppur_2023_126253
crossref_primary_10_1016_j_chemosphere_2022_134987
crossref_primary_10_1016_j_reactfunctpolym_2020_104675
crossref_primary_10_1039_D3NJ05262A
crossref_primary_10_3390_app9112220
crossref_primary_10_1016_j_jenvman_2020_111909
crossref_primary_10_1016_j_scitotenv_2022_154765
crossref_primary_10_1016_j_jallcom_2019_152745
crossref_primary_10_1007_s11705_022_2231_6
crossref_primary_10_3390_w16030418
crossref_primary_10_1016_j_seppur_2025_131820
crossref_primary_10_1039_D4RA01929F
crossref_primary_10_1016_j_chemosphere_2021_131281
crossref_primary_10_1016_j_surfin_2021_101568
crossref_primary_10_1016_j_jenvman_2025_124830
crossref_primary_10_2166_wst_2021_180
crossref_primary_10_1016_j_colsurfa_2020_126056
crossref_primary_10_1007_s11356_022_23124_3
crossref_primary_10_1016_j_scitotenv_2021_148281
crossref_primary_10_1016_j_jwpe_2022_103094
crossref_primary_10_1039_D2NJ03555C
crossref_primary_10_1016_j_molliq_2019_112111
crossref_primary_10_1071_SR22011
crossref_primary_10_2139_ssrn_3992605
crossref_primary_10_1016_j_scitotenv_2019_06_042
crossref_primary_10_1016_j_seppur_2024_128240
crossref_primary_10_1016_j_chemosphere_2020_128378
crossref_primary_10_1021_acsomega_2c04985
crossref_primary_10_1016_j_jenvman_2021_114404
crossref_primary_10_1016_j_seppur_2023_125187
crossref_primary_10_1016_j_scitotenv_2020_138633
crossref_primary_10_1016_j_jenvman_2019_109369
crossref_primary_10_1016_j_micromeso_2020_110145
crossref_primary_10_1007_s11164_019_04074_x
crossref_primary_10_1016_j_eti_2021_101875
crossref_primary_10_1016_j_cclet_2021_01_046
crossref_primary_10_1039_D1RA04279C
crossref_primary_10_1016_j_cej_2021_130009
crossref_primary_10_1016_j_chemosphere_2024_143126
crossref_primary_10_1016_j_scitotenv_2024_172333
crossref_primary_10_1021_acsomega_9b03411
crossref_primary_10_1016_j_envres_2023_116252
crossref_primary_10_1016_j_watres_2024_121614
crossref_primary_10_1007_s42773_022_00177_8
crossref_primary_10_1016_j_jece_2021_106895
crossref_primary_10_1007_s11356_024_32346_6
crossref_primary_10_1016_j_jphotochem_2020_112434
crossref_primary_10_1016_j_chemosphere_2021_131661
crossref_primary_10_1016_j_clay_2019_105420
crossref_primary_10_1016_j_scitotenv_2024_174747
crossref_primary_10_1039_D3NJ05213C
crossref_primary_10_1016_j_chemosphere_2024_143013
crossref_primary_10_1016_j_jes_2024_05_014
crossref_primary_10_1016_j_molliq_2019_111684
crossref_primary_10_1016_j_jhazmat_2020_122129
crossref_primary_10_1038_s41598_025_87754_6
crossref_primary_10_1016_j_molliq_2022_120730
crossref_primary_10_1016_j_chemosphere_2019_125001
crossref_primary_10_1016_j_ijbiomac_2024_136117
crossref_primary_10_3390_molecules28176241
crossref_primary_10_1016_j_scitotenv_2019_02_362
crossref_primary_10_1016_j_cej_2020_124193
crossref_primary_10_1080_10643389_2022_2115271
crossref_primary_10_1016_j_cej_2021_129026
crossref_primary_10_1021_acsomega_0c01399
crossref_primary_10_3389_fchem_2024_1471994
crossref_primary_10_1016_j_cej_2020_126600
crossref_primary_10_5004_dwt_2023_29997
crossref_primary_10_1016_j_apcatb_2020_118891
crossref_primary_10_1016_j_jclepro_2021_128777
crossref_primary_10_1016_j_seppur_2024_128570
crossref_primary_10_1007_s11356_020_09635_x
crossref_primary_10_1016_j_jenvman_2019_110043
crossref_primary_10_1016_j_seppur_2024_130642
crossref_primary_10_1039_D4NJ04152F
crossref_primary_10_1016_j_jenvman_2022_117206
crossref_primary_10_1016_j_seppur_2022_121339
crossref_primary_10_1007_s00339_024_08199_8
crossref_primary_10_1016_j_scitotenv_2018_11_030
crossref_primary_10_1016_j_inoche_2025_114364
crossref_primary_10_1016_j_seppur_2024_126938
crossref_primary_10_1016_j_jwpe_2024_106923
crossref_primary_10_1016_j_surfin_2024_104566
crossref_primary_10_1007_s11356_020_07945_8
crossref_primary_10_2166_aqua_2021_146
crossref_primary_10_1016_j_cej_2022_137519
crossref_primary_10_1016_j_psep_2022_02_034
crossref_primary_10_1016_j_cej_2021_133538
crossref_primary_10_1039_D1MA00329A
crossref_primary_10_1016_j_apsusc_2023_158459
crossref_primary_10_1016_j_scitotenv_2020_136839
crossref_primary_10_1016_j_cep_2022_109172
crossref_primary_10_3390_inorganics11010014
crossref_primary_10_3390_molecules27217562
crossref_primary_10_1016_j_apcatb_2020_119645
crossref_primary_10_1016_j_envint_2020_106115
crossref_primary_10_1016_j_surfin_2022_102438
crossref_primary_10_1016_j_pnsc_2023_12_014
crossref_primary_10_1007_s11356_023_31697_w
crossref_primary_10_1016_j_seppur_2024_128668
crossref_primary_10_1016_j_envres_2018_11_013
crossref_primary_10_1016_j_jhazmat_2019_121952
crossref_primary_10_1007_s11356_019_06955_5
crossref_primary_10_1016_j_scitotenv_2024_172025
crossref_primary_10_1016_j_envpol_2023_121775
crossref_primary_10_1016_j_chemosphere_2020_128551
crossref_primary_10_5004_dwt_2020_26376
crossref_primary_10_1080_09593330_2021_1996468
crossref_primary_10_1088_1757_899X_869_4_042023
crossref_primary_10_1016_j_biortech_2024_131075
crossref_primary_10_1016_j_cej_2019_122375
crossref_primary_10_1016_j_inoche_2022_110208
crossref_primary_10_1016_j_jclepro_2022_135496
crossref_primary_10_1080_09593330_2019_1575919
crossref_primary_10_1016_j_isci_2025_111762
crossref_primary_10_1039_C8EN01198B
crossref_primary_10_1007_s11356_020_08102_x
crossref_primary_10_1016_j_jwpe_2022_103001
crossref_primary_10_1016_j_jcis_2020_04_050
crossref_primary_10_1016_j_jenvman_2021_113723
crossref_primary_10_1016_j_jece_2021_105267
crossref_primary_10_1021_acsestengg_4c00321
crossref_primary_10_1007_s41204_025_00411_1
crossref_primary_10_1039_C8RA10400J
crossref_primary_10_1016_j_cej_2021_134439
crossref_primary_10_1007_s00128_020_03036_z
crossref_primary_10_1016_j_cplett_2024_141847
crossref_primary_10_1016_j_seppur_2025_132066
crossref_primary_10_1016_j_apsusc_2023_157591
crossref_primary_10_1016_j_scitotenv_2020_142846
crossref_primary_10_3390_w16202932
crossref_primary_10_1155_2021_1764647
crossref_primary_10_1016_j_cej_2025_161229
crossref_primary_10_1007_s11356_020_07676_w
crossref_primary_10_1016_j_jclepro_2023_135857
crossref_primary_10_1016_j_envres_2020_110529
crossref_primary_10_1016_j_colsurfa_2019_124344
crossref_primary_10_1007_s11356_021_15364_6
crossref_primary_10_1016_j_envpol_2019_113874
crossref_primary_10_1007_s11356_023_30293_2
crossref_primary_10_1557_s43578_021_00203_8
crossref_primary_10_1016_j_scitotenv_2022_155835
crossref_primary_10_1016_j_seppur_2022_122248
crossref_primary_10_1007_s10904_022_02474_y
crossref_primary_10_2166_wst_2020_435
crossref_primary_10_3390_w15132376
crossref_primary_10_1080_03067319_2022_2130691
crossref_primary_10_1016_j_watres_2023_119899
crossref_primary_10_1016_j_scitotenv_2023_169841
crossref_primary_10_1016_j_jece_2024_112132
crossref_primary_10_1002_slct_202101116
crossref_primary_10_1016_j_cjche_2024_02_013
crossref_primary_10_1016_j_jenvman_2020_111130
crossref_primary_10_1016_j_envpol_2020_114809
crossref_primary_10_1016_j_biortech_2022_127316
crossref_primary_10_1016_j_cej_2022_138658
crossref_primary_10_1016_j_jcis_2020_05_008
crossref_primary_10_1039_D2EW00624C
crossref_primary_10_1007_s10876_025_02775_5
crossref_primary_10_1016_j_scitotenv_2020_139636
crossref_primary_10_1016_j_jece_2021_105721
crossref_primary_10_1016_j_jenvman_2019_109799
crossref_primary_10_1016_j_colsurfa_2020_125144
crossref_primary_10_1016_j_seppur_2023_125478
crossref_primary_10_1016_j_seppur_2023_124702
crossref_primary_10_1007_s12517_020_5182_6
crossref_primary_10_2166_wst_2022_173
crossref_primary_10_1016_j_chemosphere_2024_142202
crossref_primary_10_1080_10426507_2021_1989683
crossref_primary_10_1016_j_micromeso_2024_113483
crossref_primary_10_1016_j_jre_2018_12_019
crossref_primary_10_1016_j_cej_2020_124915
crossref_primary_10_1016_j_scitotenv_2020_138892
crossref_primary_10_1021_acsomega_3c00788
crossref_primary_10_1016_j_cej_2019_123305
crossref_primary_10_1007_s10570_020_03094_w
crossref_primary_10_1016_j_scitotenv_2020_139749
crossref_primary_10_1016_j_ijbiomac_2020_11_209
crossref_primary_10_1016_j_surfin_2023_103582
crossref_primary_10_1016_j_mineng_2021_107316
crossref_primary_10_1007_s13201_022_01642_2
crossref_primary_10_1016_j_jwpe_2018_10_008
crossref_primary_10_1080_10643389_2020_1864958
crossref_primary_10_1016_j_jwpe_2022_103319
crossref_primary_10_1007_s10904_022_02346_5
crossref_primary_10_1016_j_jece_2023_111418
crossref_primary_10_1088_1361_6528_ace059
crossref_primary_10_1016_j_cej_2020_127530
crossref_primary_10_1016_j_jece_2022_107329
crossref_primary_10_1016_j_seppur_2023_123529
crossref_primary_10_2166_wst_2020_467
crossref_primary_10_1016_j_jcis_2022_01_033
crossref_primary_10_1016_j_jenvman_2024_120938
crossref_primary_10_1016_j_jwpe_2023_103512
crossref_primary_10_1016_j_scitotenv_2021_144974
crossref_primary_10_3390_ma18061326
crossref_primary_10_1016_j_jhazmat_2022_129090
crossref_primary_10_1016_j_cej_2024_154956
crossref_primary_10_1016_j_ijbiomac_2024_138918
crossref_primary_10_1088_2053_1591_ac1533
crossref_primary_10_1021_acsomega_0c04842
crossref_primary_10_1088_2053_1591_ad85c3
Cites_doi 10.1016/j.chemosphere.2015.09.083
10.1016/j.chemosphere.2007.04.022
10.1080/10643389.2012.741311
10.1016/j.cej.2012.11.067
10.1126/science.1142525
10.1039/c0jm02718a
10.1016/j.jhazmat.2009.02.025
10.1016/S0008-8846(00)00225-8
10.1039/C4TA07083F
10.1016/0021-9797(82)90085-6
10.1007/s002530051052
10.1007/s10853-017-0966-0
10.1039/c4ta00326h
10.1016/j.jhazmat.2008.01.061
10.1016/j.watres.2017.09.034
10.1016/j.jallcom.2009.12.175
10.1016/j.jhazmat.2009.03.057
10.1016/j.jcis.2014.02.020
10.1016/j.chemosphere.2014.02.024
10.1016/j.cej.2017.10.117
10.1021/acssuschemeng.5b00932
10.1016/j.biortech.2009.02.030
10.1016/j.cej.2013.09.077
10.1016/j.chemosphere.2016.02.004
10.1021/es401301z
10.1016/j.watres.2017.09.050
10.1016/S0043-1354(97)00271-6
10.1016/j.jmmm.2006.05.001
10.1016/j.powtec.2014.09.024
10.1016/j.jcis.2017.11.003
10.1021/acssuschemeng.5b01324
10.1016/j.cej.2011.11.099
10.1016/j.watres.2017.12.008
10.4028/www.scientific.net/AMM.618.24
10.1021/es048018n
10.1021/acs.chemrev.7b00224
10.1016/j.colsurfa.2007.05.027
10.1021/es800924c
10.1016/j.jcis.2015.11.043
10.1021/acs.est.6b05623
10.1039/c2jm16681j
10.1016/j.cej.2017.01.043
10.1016/j.clay.2009.09.009
10.1002/3527602097
10.1016/S1001-0742(09)60141-8
10.1016/j.cej.2012.01.066
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright © 2018 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Inc.
– notice: Copyright © 2018 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.jcis.2018.07.025
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 713
ExternalDocumentID 30015156
10_1016_j_jcis_2018_07_025
S0021979718307811
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
WH7
XPP
YQT
ZMT
ZU3
~02
~G-
.GJ
29K
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CAG
CITATION
COF
D-I
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
H~9
NDZJH
NEJ
R2-
SCB
SCE
SEW
SSH
VH1
WUQ
ZGI
ZXP
NPM
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c492t-10e30e4a3ec7ca8324b234568dcf13c60ee893ca3719ae43bd7accae523272d53
IEDL.DBID .~1
ISSN 0021-9797
1095-7103
IngestDate Tue Aug 05 09:31:00 EDT 2025
Fri Jul 11 01:41:08 EDT 2025
Wed Feb 19 02:43:06 EST 2025
Tue Jul 01 01:18:34 EDT 2025
Thu Apr 24 22:56:28 EDT 2025
Fri Feb 23 02:47:34 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Ferrihydrite
Natural magnetite
Lanthanum
Adsorption
Phosphate
Language English
License Copyright © 2018 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-10e30e4a3ec7ca8324b234568dcf13c60ee893ca3719ae43bd7accae523272d53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7057-7687
PMID 30015156
PQID 2071562812
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2116863410
proquest_miscellaneous_2071562812
pubmed_primary_30015156
crossref_citationtrail_10_1016_j_jcis_2018_07_025
crossref_primary_10_1016_j_jcis_2018_07_025
elsevier_sciencedirect_doi_10_1016_j_jcis_2018_07_025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-15
PublicationDateYYYYMMDD 2018-11-15
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of colloid and interface science
PublicationTitleAlternate J Colloid Interface Sci
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Totlani, Mehta, Mandavgane (b0170) 2012; 181–182
Usman, Byrne, Chaudhary, Orsetti, Hanna, Ruby, Kappler, Haderlein (b0130) 2018
Xie, Wang, Fang, Li, Wu (b0185) 2014; 423
Michel, Ehm, Antao, Lee, Chupas, Liu, Strongin, Schoonen, Phillips, Parise (b0150) 2007; 316
Huang, Wang, Zhu, Li, Yao, Rudolph, Haghseresht (b0040) 2008; 158
R.M. Cornell, U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, 2003.
Qiu, Liang, Yu, Zhang, Song, Chen (b0200) 2017; 315
Li, Feng, Yan, Sparks, Phillips (b0005) 2013; 47
Wu, Lam, Lee, Lau (b0235) 2007; 69
Ye, Cong, Zhang, Hoffmann, Zeng, Wu, Zhang, Fang (b0020) 2015; 3
Acelas, Martin, López, Jefferson (b0165) 2015; 119
Fang, Huang, Holm, Yang, Hansen, Wang (b0195) 2015; 3
Jayson, Lawless, Fairhurst (b0050) 1982; 86
Dong, Wang, Zhao, Zhou, Zheng (b0145) 2017; 126
Liu, Zhu, Xu, Xu, Ge, Xi, Zhu, He (b0140) 2016; 144
Loganathan, Vigneswaran, Kandasamy, Bolan (b0030) 2014; 44
Zong, Liu, Wang, Yang, Jiang, Fu (b0090) 2017; 52
Huang, Li, Liu, Tao, Zhu, Yang, Zhang (b0180) 2014; 236
Rao, Jang, Lee, Yi, Jeong (b0210) 2010; 496
Chen, Huo, Li, Wang (b0095) 2016; 4
Liu, Zhao, Jiang (b0120) 2008; 42
Maity, Agrawal (b0125) 2007; 308
Liu, Chen, Wang, Zheng, Yang (b0105) 2018; 335
Xu, Zhang, Mortimer, Pan (b0085) 2017; 51
Zhang, Zhou, Liu, Chang, Wan, Chen (b0215) 2012; 185–186
Shin, Karthikeyan, Tshabalala (b0060) 2005; 39
Wu, Fang, Fortner, Guan, Lo (b0115) 2017; 126
Uludag-Demirer, Othman (b0010) 2009; 100
Xie, Lin, Li, Wu, Kong (b0190) 2014; 269
Huang, Zhu, Tang, Yu, Wang, Li, Zhang (b0100) 2014; 2
Wang, Shen, Shen, Li (b0155) 2016; 150
Li, Ru, Yin, Liu, Wang, Zhang (b0230) 2009; 168
van Loosdrecht, Hooijmans, Brdjanovic, Heijnen (b0015) 1997; 48
Agyei, Strydom, Potgieter (b0045) 2000; 30
Haghseresht, Wang, Do (b0080) 2009; 46
Sakadevan, Bavor (b0035) 1998; 32
Zhu, Zhu, Zhu, Ge, Wang (b0025) 2009; 168
Ou, Zhou, Mao, Wang, Xia, Min (b0055) 2007; 308
Lai, Xie, Chi, Gu, Wu (b0065) 2016; 465
Wang, Li, Harrington, Liu, Parise, Feng, Sparks (b0160) 2013; 47
Zhao, Li, Li (b0205) 2014; 618
Yang, Yuan, Chen, Zou, Yuan, Yu (b0225) 2012; 22
Liu, Zhou, Chen, Zhang, Chang (b0075) 2013; 215–216
Zhang, Shen, Shan, Chen, Mei, Lei, Wang (b0175) 2010; 22
Goscianska, Ptaszkowska-Koniarz, Frankowski, Franus, Panek, Franus (b0070) 2018; 513
Fang, Liu, Li, Xu, Huang, Wang (b0110) 2018; 130
Yang, Zhou, Zhao, Zhang, Yin, Wei, Qian, Wang, Yu (b0220) 2011; 21
Qiu (10.1016/j.jcis.2018.07.025_b0200) 2017; 315
Haghseresht (10.1016/j.jcis.2018.07.025_b0080) 2009; 46
Maity (10.1016/j.jcis.2018.07.025_b0125) 2007; 308
Huang (10.1016/j.jcis.2018.07.025_b0180) 2014; 236
Agyei (10.1016/j.jcis.2018.07.025_b0045) 2000; 30
Wang (10.1016/j.jcis.2018.07.025_b0155) 2016; 150
Xu (10.1016/j.jcis.2018.07.025_b0085) 2017; 51
Liu (10.1016/j.jcis.2018.07.025_b0140) 2016; 144
Zhang (10.1016/j.jcis.2018.07.025_b0175) 2010; 22
Wu (10.1016/j.jcis.2018.07.025_b0115) 2017; 126
Liu (10.1016/j.jcis.2018.07.025_b0075) 2013; 215–216
Chen (10.1016/j.jcis.2018.07.025_b0095) 2016; 4
Dong (10.1016/j.jcis.2018.07.025_b0145) 2017; 126
Shin (10.1016/j.jcis.2018.07.025_b0060) 2005; 39
Xie (10.1016/j.jcis.2018.07.025_b0185) 2014; 423
van Loosdrecht (10.1016/j.jcis.2018.07.025_b0015) 1997; 48
Goscianska (10.1016/j.jcis.2018.07.025_b0070) 2018; 513
Liu (10.1016/j.jcis.2018.07.025_b0105) 2018; 335
Liu (10.1016/j.jcis.2018.07.025_b0120) 2008; 42
Usman (10.1016/j.jcis.2018.07.025_b0130) 2018
Fang (10.1016/j.jcis.2018.07.025_b0195) 2015; 3
Wang (10.1016/j.jcis.2018.07.025_b0160) 2013; 47
Xie (10.1016/j.jcis.2018.07.025_b0190) 2014; 269
Yang (10.1016/j.jcis.2018.07.025_b0220) 2011; 21
Ye (10.1016/j.jcis.2018.07.025_b0020) 2015; 3
Totlani (10.1016/j.jcis.2018.07.025_b0170) 2012; 181–182
Yang (10.1016/j.jcis.2018.07.025_b0225) 2012; 22
Huang (10.1016/j.jcis.2018.07.025_b0040) 2008; 158
Loganathan (10.1016/j.jcis.2018.07.025_b0030) 2014; 44
Zhang (10.1016/j.jcis.2018.07.025_b0215) 2012; 185–186
Li (10.1016/j.jcis.2018.07.025_b0005) 2013; 47
Huang (10.1016/j.jcis.2018.07.025_b0100) 2014; 2
10.1016/j.jcis.2018.07.025_b0135
Acelas (10.1016/j.jcis.2018.07.025_b0165) 2015; 119
Uludag-Demirer (10.1016/j.jcis.2018.07.025_b0010) 2009; 100
Lai (10.1016/j.jcis.2018.07.025_b0065) 2016; 465
Michel (10.1016/j.jcis.2018.07.025_b0150) 2007; 316
Sakadevan (10.1016/j.jcis.2018.07.025_b0035) 1998; 32
Zong (10.1016/j.jcis.2018.07.025_b0090) 2017; 52
Jayson (10.1016/j.jcis.2018.07.025_b0050) 1982; 86
Zhao (10.1016/j.jcis.2018.07.025_b0205) 2014; 618
Fang (10.1016/j.jcis.2018.07.025_b0110) 2018; 130
Ou (10.1016/j.jcis.2018.07.025_b0055) 2007; 308
Rao (10.1016/j.jcis.2018.07.025_b0210) 2010; 496
Wu (10.1016/j.jcis.2018.07.025_b0235) 2007; 69
Zhu (10.1016/j.jcis.2018.07.025_b0025) 2009; 168
Li (10.1016/j.jcis.2018.07.025_b0230) 2009; 168
References_xml – volume: 32
  start-page: 393
  year: 1998
  end-page: 399
  ident: b0035
  article-title: Phosphate adsorption characteristics of soils, slags and zeolite to be used as substrates in constructed wetland systems
  publication-title: Water Res.
– volume: 39
  start-page: 6273
  year: 2005
  end-page: 6279
  ident: b0060
  article-title: Orthophosphate sorption onto lanthanum-treated lignocellulosic sorbents
  publication-title: Environ. Sci. Technol.
– volume: 496
  start-page: 251
  year: 2010
  end-page: 255
  ident: b0210
  article-title: Synthesis and photoluminescence characterization of RE
  publication-title: J. Alloy. Compd.
– volume: 126
  start-page: 433
  year: 2017
  end-page: 441
  ident: b0145
  article-title: La
  publication-title: Water Res.
– volume: 236
  start-page: 191
  year: 2014
  end-page: 201
  ident: b0180
  article-title: Kinetics, isotherm, thermodynamic, and adsorption mechanism studies of La(OH)
  publication-title: Chem. Eng. J.
– volume: 3
  start-page: 3324
  year: 2015
  end-page: 3331
  ident: b0020
  article-title: Preparation of a new granular acid-activated neutralized red mud and evaluation of its performance for phosphate adsorption
  publication-title: ACS Sustain. Chem. Eng.
– volume: 168
  start-page: 1590
  year: 2009
  end-page: 1594
  ident: b0025
  article-title: Sorption of naphthalene and phosphate to the CTMAB-Al
  publication-title: J. Hazard. Mater.
– reference: R.M. Cornell, U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, 2003.
– volume: 3
  start-page: 7505
  year: 2015
  end-page: 7512
  ident: b0195
  article-title: Facile upscaled synthesis of layered iron oxide nanosheets and their application in phosphate removal
  publication-title: J. Mater. Chem. A
– volume: 42
  start-page: 6949
  year: 2008
  end-page: 6954
  ident: b0120
  article-title: Coating Fe
  publication-title: Environ. Sci. Technol.
– volume: 22
  start-page: 507
  year: 2010
  end-page: 511
  ident: b0175
  article-title: Adsorption behavior of phosphate on Lanthanum(III) doped mesoporous silicates material
  publication-title: J. Environ. Sci.
– volume: 181–182
  start-page: 376
  year: 2012
  end-page: 386
  ident: b0170
  article-title: Comparative study of adsorption of Ni (II) on RHA and carbon embedded silica obtained from RHA
  publication-title: Chem. Eng. J.
– volume: 48
  start-page: 289
  year: 1997
  end-page: 296
  ident: b0015
  article-title: Biological phosphate removal processes
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 158
  start-page: 35
  year: 2008
  end-page: 42
  ident: b0040
  article-title: Phosphate removal from wastewater using red mud
  publication-title: J. Hazard. Mater.
– volume: 144
  start-page: 1148
  year: 2016
  end-page: 1155
  ident: b0140
  article-title: Co-adsorption of phosphate and zinc(II) on the surface of ferrihydrite
  publication-title: Chemosphere
– volume: 126
  start-page: 179
  year: 2017
  end-page: 188
  ident: b0115
  article-title: Highly efficient and selective phosphate removal from wastewater by magnetically recoverable La(OH)
  publication-title: Water Res.
– volume: 185–186
  start-page: 160
  year: 2012
  end-page: 167
  ident: b0215
  article-title: Phosphate adsorption on lanthanum hydroxide-doped activated carbon fiber
  publication-title: Chem. Eng. J.
– volume: 423
  start-page: 13
  year: 2014
  end-page: 19
  ident: b0185
  article-title: Green synthesis of a novel hybrid sorbent of zeolite/lanthanum hydroxide and its application in the removal and recovery of phosphate from water
  publication-title: J. Colloid Interf. Sci.
– volume: 30
  start-page: 823
  year: 2000
  end-page: 826
  ident: b0045
  article-title: An investigation of phosphate ion adsorption from aqueous solution by fly ash and slag
  publication-title: Cem. Concr. Res.
– volume: 130
  start-page: 243
  year: 2018
  end-page: 254
  ident: b0110
  article-title: Magnetite/lanthanum hydroxide for phosphate sequestration and recovery from lake and the attenuation effects of sediment particles
  publication-title: Water Res.
– volume: 308
  start-page: 46
  year: 2007
  end-page: 55
  ident: b0125
  article-title: Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media
  publication-title: J. Magn. Magn. Mater.
– volume: 513
  start-page: 72
  year: 2018
  end-page: 81
  ident: b0070
  article-title: Removal of phosphate from water by lanthanum-modified zeolites obtained from fly ash
  publication-title: J. Colloid Interf. Sci.
– volume: 2
  start-page: 8839
  year: 2014
  end-page: 8848
  ident: b0100
  article-title: Lanthanum-doped ordered mesoporous hollow silica spheres as novel adsorbents for efficient phosphate removal
  publication-title: J. Mater. Chem. A
– volume: 335
  start-page: 443
  year: 2018
  end-page: 449
  ident: b0105
  article-title: Highly effective wastewater phosphorus removal by phosphorus accumulating organism combined with magnetic sorbent MFC@La(OH)
  publication-title: Chem. Eng. J.
– volume: 4
  start-page: 1296
  year: 2016
  end-page: 1302
  ident: b0095
  article-title: Selective adsorption and efficient removal of phosphate from aqueous medium with graphene-lanthanum composite
  publication-title: ACS Sustain. Chem. Eng.
– volume: 316
  start-page: 1726
  year: 2007
  end-page: 1729
  ident: b0150
  article-title: The structure of ferrihydrite, a nanocrystaline material
  publication-title: Science
– volume: 465
  start-page: 76
  year: 2016
  end-page: 82
  ident: b0065
  article-title: Adsorption of phosphate from water by easily separable Fe
  publication-title: J. Colloid Interf. Sci.
– volume: 168
  start-page: 326
  year: 2009
  end-page: 330
  ident: b0230
  article-title: Removal of phosphate from polluted water by lanthanum doped vesuvianite
  publication-title: J. Hazard. Mater.
– volume: 618
  start-page: 24
  year: 2014
  end-page: 27
  ident: b0205
  article-title: Preparation and characterization of magnetite nanoparticles
  publication-title: Appl. Mech. Mater.
– volume: 69
  start-page: 289
  year: 2007
  end-page: 294
  ident: b0235
  article-title: Removal of phosphate from water by a highly selective La(III)-chelex resin
  publication-title: Chemosphere
– volume: 44
  start-page: 847
  year: 2014
  end-page: 907
  ident: b0030
  article-title: Removal and recovery of phosphate from water using sorption
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 215–216
  start-page: 859
  year: 2013
  end-page: 867
  ident: b0075
  article-title: Phosphate adsorption on hydroxyl-iron-lanthanum doped activated carbon fiber
  publication-title: Chem. Eng. J.
– volume: 47
  start-page: 10322
  year: 2013
  end-page: 10331
  ident: b0160
  article-title: Effect of ferrihydrite crystallite size on phosphate adsorption reactivity
  publication-title: Environ. Sci. Technol.
– volume: 22
  start-page: 9983
  year: 2012
  ident: b0225
  article-title: Rationally designed functional macroporous materials as new adsorbents for efficient phosphorus removal
  publication-title: J. Mater. Chem.
– volume: 86
  start-page: 397
  year: 1982
  end-page: 410
  ident: b0050
  article-title: The adsorption of organic and inorganic phosphates onto a new activated carbon adsorbent
  publication-title: J. Colloid Interf. Sci.
– volume: 21
  start-page: 2489
  year: 2011
  ident: b0220
  article-title: A designed nanoporous material for phosphate removal with high efficiency
  publication-title: J. Mater. Chem.
– volume: 100
  start-page: 3236
  year: 2009
  end-page: 3244
  ident: b0010
  article-title: Removal of ammonium and phosphate from the supernatant of anaerobically digested waste activated sludge by chemical precipitation
  publication-title: Bioresour. Technol.
– volume: 52
  start-page: 7294
  year: 2017
  end-page: 7310
  ident: b0090
  article-title: Facile preparation and characterization of lanthanum-loaded carboxylated multi-walled carbon nanotubes and their application for the adsorption of phosphate ions
  publication-title: J. Mater. Sci.
– volume: 150
  start-page: 1
  year: 2016
  end-page: 7
  ident: b0155
  article-title: Phosphate adsorption on lanthanum loaded biochar
  publication-title: Chemosphere
– volume: 269
  start-page: 351
  year: 2014
  end-page: 357
  ident: b0190
  article-title: Removal and recovery of phosphate from water by activated aluminum oxide and lanthanum oxide
  publication-title: Powder Technol.
– volume: 46
  start-page: 369
  year: 2009
  end-page: 375
  ident: b0080
  article-title: A novel lanthanum-modified bentonite, Phoslock, for phosphate removal from wastewaters
  publication-title: Appl. Clay Sci.
– volume: 47
  start-page: 8308
  year: 2013
  end-page: 8315
  ident: b0005
  article-title: Solid-state NMR spectroscopic study of phosphate sorption mechanisms on aluminum (hydr)oxides
  publication-title: Environ. Sci. Technol.
– volume: 308
  start-page: 47
  year: 2007
  end-page: 53
  ident: b0055
  article-title: Highly efficient removal of phosphate by lanthanum-doped mesoporous SiO
  publication-title: Colloids Surf., A
– year: 2018
  ident: b0130
  article-title: Magnetite and green rust: synthesis, properties, and environmental applications of mixed-valent iron minerals
  publication-title: Chem. Rev.
– volume: 315
  start-page: 345
  year: 2017
  end-page: 354
  ident: b0200
  article-title: Preferable phosphate sequestration by nano-La(III) (hydr)oxides modified wheat straw with excellent properties in regeneration
  publication-title: Chem. Eng. J.
– volume: 51
  start-page: 3418
  year: 2017
  end-page: 3425
  ident: b0085
  article-title: Enhanced phosphorus locking by novel lanthanum/aluminum-hydroxide composite: implications for eutrophication control
  publication-title: Environ. Sci. Technol.
– volume: 119
  start-page: 1353
  year: 2015
  end-page: 1360
  ident: b0165
  article-title: Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media
  publication-title: Chemosphere
– volume: 144
  start-page: 1148
  year: 2016
  ident: 10.1016/j.jcis.2018.07.025_b0140
  article-title: Co-adsorption of phosphate and zinc(II) on the surface of ferrihydrite
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.09.083
– volume: 69
  start-page: 289
  year: 2007
  ident: 10.1016/j.jcis.2018.07.025_b0235
  article-title: Removal of phosphate from water by a highly selective La(III)-chelex resin
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2007.04.022
– volume: 44
  start-page: 847
  year: 2014
  ident: 10.1016/j.jcis.2018.07.025_b0030
  article-title: Removal and recovery of phosphate from water using sorption
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643389.2012.741311
– volume: 215–216
  start-page: 859
  year: 2013
  ident: 10.1016/j.jcis.2018.07.025_b0075
  article-title: Phosphate adsorption on hydroxyl-iron-lanthanum doped activated carbon fiber
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.11.067
– volume: 316
  start-page: 1726
  year: 2007
  ident: 10.1016/j.jcis.2018.07.025_b0150
  article-title: The structure of ferrihydrite, a nanocrystaline material
  publication-title: Science
  doi: 10.1126/science.1142525
– volume: 21
  start-page: 2489
  year: 2011
  ident: 10.1016/j.jcis.2018.07.025_b0220
  article-title: A designed nanoporous material for phosphate removal with high efficiency
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm02718a
– volume: 168
  start-page: 326
  year: 2009
  ident: 10.1016/j.jcis.2018.07.025_b0230
  article-title: Removal of phosphate from polluted water by lanthanum doped vesuvianite
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2009.02.025
– volume: 30
  start-page: 823
  year: 2000
  ident: 10.1016/j.jcis.2018.07.025_b0045
  article-title: An investigation of phosphate ion adsorption from aqueous solution by fly ash and slag
  publication-title: Cem. Concr. Res.
  doi: 10.1016/S0008-8846(00)00225-8
– volume: 3
  start-page: 7505
  year: 2015
  ident: 10.1016/j.jcis.2018.07.025_b0195
  article-title: Facile upscaled synthesis of layered iron oxide nanosheets and their application in phosphate removal
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA07083F
– volume: 86
  start-page: 397
  year: 1982
  ident: 10.1016/j.jcis.2018.07.025_b0050
  article-title: The adsorption of organic and inorganic phosphates onto a new activated carbon adsorbent
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/0021-9797(82)90085-6
– volume: 48
  start-page: 289
  year: 1997
  ident: 10.1016/j.jcis.2018.07.025_b0015
  article-title: Biological phosphate removal processes
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s002530051052
– volume: 52
  start-page: 7294
  year: 2017
  ident: 10.1016/j.jcis.2018.07.025_b0090
  article-title: Facile preparation and characterization of lanthanum-loaded carboxylated multi-walled carbon nanotubes and their application for the adsorption of phosphate ions
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-017-0966-0
– volume: 2
  start-page: 8839
  year: 2014
  ident: 10.1016/j.jcis.2018.07.025_b0100
  article-title: Lanthanum-doped ordered mesoporous hollow silica spheres as novel adsorbents for efficient phosphate removal
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c4ta00326h
– volume: 158
  start-page: 35
  year: 2008
  ident: 10.1016/j.jcis.2018.07.025_b0040
  article-title: Phosphate removal from wastewater using red mud
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2008.01.061
– volume: 126
  start-page: 179
  year: 2017
  ident: 10.1016/j.jcis.2018.07.025_b0115
  article-title: Highly efficient and selective phosphate removal from wastewater by magnetically recoverable La(OH)3/Fe3O4 nanocomposites
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.09.034
– volume: 47
  start-page: 8308
  year: 2013
  ident: 10.1016/j.jcis.2018.07.025_b0005
  article-title: Solid-state NMR spectroscopic study of phosphate sorption mechanisms on aluminum (hydr)oxides
  publication-title: Environ. Sci. Technol.
– volume: 496
  start-page: 251
  year: 2010
  ident: 10.1016/j.jcis.2018.07.025_b0210
  article-title: Synthesis and photoluminescence characterization of RE3+(=Eu3+, Dy3+)-activated Ca3La(VO4)3 phosphors for white light-emitting diodes
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2009.12.175
– volume: 168
  start-page: 1590
  year: 2009
  ident: 10.1016/j.jcis.2018.07.025_b0025
  article-title: Sorption of naphthalene and phosphate to the CTMAB-Al13 intercalated bentonites
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2009.03.057
– volume: 423
  start-page: 13
  year: 2014
  ident: 10.1016/j.jcis.2018.07.025_b0185
  article-title: Green synthesis of a novel hybrid sorbent of zeolite/lanthanum hydroxide and its application in the removal and recovery of phosphate from water
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2014.02.020
– volume: 119
  start-page: 1353
  year: 2015
  ident: 10.1016/j.jcis.2018.07.025_b0165
  article-title: Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2014.02.024
– volume: 335
  start-page: 443
  year: 2018
  ident: 10.1016/j.jcis.2018.07.025_b0105
  article-title: Highly effective wastewater phosphorus removal by phosphorus accumulating organism combined with magnetic sorbent MFC@La(OH)3
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.10.117
– volume: 3
  start-page: 3324
  year: 2015
  ident: 10.1016/j.jcis.2018.07.025_b0020
  article-title: Preparation of a new granular acid-activated neutralized red mud and evaluation of its performance for phosphate adsorption
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.5b00932
– volume: 100
  start-page: 3236
  year: 2009
  ident: 10.1016/j.jcis.2018.07.025_b0010
  article-title: Removal of ammonium and phosphate from the supernatant of anaerobically digested waste activated sludge by chemical precipitation
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2009.02.030
– volume: 236
  start-page: 191
  year: 2014
  ident: 10.1016/j.jcis.2018.07.025_b0180
  article-title: Kinetics, isotherm, thermodynamic, and adsorption mechanism studies of La(OH)3-modified exfoliated vermiculites as highly efficient phosphate adsorbents
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.09.077
– volume: 150
  start-page: 1
  year: 2016
  ident: 10.1016/j.jcis.2018.07.025_b0155
  article-title: Phosphate adsorption on lanthanum loaded biochar
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.02.004
– volume: 47
  start-page: 10322
  year: 2013
  ident: 10.1016/j.jcis.2018.07.025_b0160
  article-title: Effect of ferrihydrite crystallite size on phosphate adsorption reactivity
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es401301z
– volume: 126
  start-page: 433
  year: 2017
  ident: 10.1016/j.jcis.2018.07.025_b0145
  article-title: La3+/La(OH)3 loaded magnetic cationic hydrogel composites for phosphate removal: effect of lanthanum species and mechanistic study
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.09.050
– volume: 32
  start-page: 393
  year: 1998
  ident: 10.1016/j.jcis.2018.07.025_b0035
  article-title: Phosphate adsorption characteristics of soils, slags and zeolite to be used as substrates in constructed wetland systems
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(97)00271-6
– volume: 308
  start-page: 46
  year: 2007
  ident: 10.1016/j.jcis.2018.07.025_b0125
  article-title: Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2006.05.001
– volume: 269
  start-page: 351
  year: 2014
  ident: 10.1016/j.jcis.2018.07.025_b0190
  article-title: Removal and recovery of phosphate from water by activated aluminum oxide and lanthanum oxide
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2014.09.024
– volume: 513
  start-page: 72
  year: 2018
  ident: 10.1016/j.jcis.2018.07.025_b0070
  article-title: Removal of phosphate from water by lanthanum-modified zeolites obtained from fly ash
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2017.11.003
– volume: 4
  start-page: 1296
  year: 2016
  ident: 10.1016/j.jcis.2018.07.025_b0095
  article-title: Selective adsorption and efficient removal of phosphate from aqueous medium with graphene-lanthanum composite
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.5b01324
– volume: 181–182
  start-page: 376
  year: 2012
  ident: 10.1016/j.jcis.2018.07.025_b0170
  article-title: Comparative study of adsorption of Ni (II) on RHA and carbon embedded silica obtained from RHA
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2011.11.099
– volume: 130
  start-page: 243
  year: 2018
  ident: 10.1016/j.jcis.2018.07.025_b0110
  article-title: Magnetite/lanthanum hydroxide for phosphate sequestration and recovery from lake and the attenuation effects of sediment particles
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.12.008
– volume: 618
  start-page: 24
  year: 2014
  ident: 10.1016/j.jcis.2018.07.025_b0205
  article-title: Preparation and characterization of magnetite nanoparticles
  publication-title: Appl. Mech. Mater.
  doi: 10.4028/www.scientific.net/AMM.618.24
– volume: 39
  start-page: 6273
  year: 2005
  ident: 10.1016/j.jcis.2018.07.025_b0060
  article-title: Orthophosphate sorption onto lanthanum-treated lignocellulosic sorbents
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es048018n
– year: 2018
  ident: 10.1016/j.jcis.2018.07.025_b0130
  article-title: Magnetite and green rust: synthesis, properties, and environmental applications of mixed-valent iron minerals
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00224
– volume: 308
  start-page: 47
  year: 2007
  ident: 10.1016/j.jcis.2018.07.025_b0055
  article-title: Highly efficient removal of phosphate by lanthanum-doped mesoporous SiO2
  publication-title: Colloids Surf., A
  doi: 10.1016/j.colsurfa.2007.05.027
– volume: 42
  start-page: 6949
  year: 2008
  ident: 10.1016/j.jcis.2018.07.025_b0120
  article-title: Coating Fe3O4 Magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es800924c
– volume: 465
  start-page: 76
  year: 2016
  ident: 10.1016/j.jcis.2018.07.025_b0065
  article-title: Adsorption of phosphate from water by easily separable Fe3O4@SiO2 core/shell magnetic nanoparticles functionalized with hydrous lanthanum oxide
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2015.11.043
– volume: 51
  start-page: 3418
  year: 2017
  ident: 10.1016/j.jcis.2018.07.025_b0085
  article-title: Enhanced phosphorus locking by novel lanthanum/aluminum-hydroxide composite: implications for eutrophication control
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b05623
– volume: 22
  start-page: 9983
  year: 2012
  ident: 10.1016/j.jcis.2018.07.025_b0225
  article-title: Rationally designed functional macroporous materials as new adsorbents for efficient phosphorus removal
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm16681j
– volume: 315
  start-page: 345
  year: 2017
  ident: 10.1016/j.jcis.2018.07.025_b0200
  article-title: Preferable phosphate sequestration by nano-La(III) (hydr)oxides modified wheat straw with excellent properties in regeneration
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.01.043
– volume: 46
  start-page: 369
  year: 2009
  ident: 10.1016/j.jcis.2018.07.025_b0080
  article-title: A novel lanthanum-modified bentonite, Phoslock, for phosphate removal from wastewaters
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2009.09.009
– ident: 10.1016/j.jcis.2018.07.025_b0135
  doi: 10.1002/3527602097
– volume: 22
  start-page: 507
  year: 2010
  ident: 10.1016/j.jcis.2018.07.025_b0175
  article-title: Adsorption behavior of phosphate on Lanthanum(III) doped mesoporous silicates material
  publication-title: J. Environ. Sci.
  doi: 10.1016/S1001-0742(09)60141-8
– volume: 185–186
  start-page: 160
  year: 2012
  ident: 10.1016/j.jcis.2018.07.025_b0215
  article-title: Phosphate adsorption on lanthanum hydroxide-doped activated carbon fiber
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.01.066
SSID ssj0011559
Score 2.6411347
Snippet [Display omitted] Present study reports the successful development of a novel lanthanum (La)-based magnetic adsorbent and its use for phosphate removal from...
Present study reports the successful development of a novel lanthanum (La)-based magnetic adsorbent and its use for phosphate removal from water. For its...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 704
SubjectTerms adsorbents
Adsorption
electrostatic interactions
Ferrihydrite
Fourier transform infrared spectroscopy
hydrochloric acid
Lanthanum
ligands
magnetism
magnetite
municipal wastewater
Natural magnetite
Phosphate
phosphates
X-ray photoelectron spectroscopy
Title Superior adsorption of phosphate by ferrihydrite-coated and lanthanum-decorated magnetite
URI https://dx.doi.org/10.1016/j.jcis.2018.07.025
https://www.ncbi.nlm.nih.gov/pubmed/30015156
https://www.proquest.com/docview/2071562812
https://www.proquest.com/docview/2116863410
Volume 530
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NTxsxEB1FcGg5IEpbCJTISNzQlnjtXe8eUVSUgpoLIKUny2t7m0SwG4XkwIXfzsx-REWiOfS4lr2yZuyZN_LMG4Az6xJnlIsDyZUNpBdpYCKMUoyX6GBEKlJJ1ci_RvHwXl6Po3EHBm0tDKVVNra_tumVtW5GLhppXsynU6rxxdumUjSughhrqgp2qSit7_vLOs2D07NbnebBA5rdFM7UOV4zOyXKbp5UBJ7ULvt95_Qv8Fk5oas92G3QI7usN_gJOr7Yhw-DtmnbPuz8xS_4GX7frojIuFww457KRWUdWJmz-aR8mk8QZbLsmeXEzTh5dgsEn4EtcdQxUzj2gDKfmGL1GDgKUavxR_OnoLI0_wXur37cDYZB00shsDINl2htveh7aYS3yhq8xjILBYKnxNmcCxv3vUfkYo1QPEU9icwpg8r1GKeGKnSR-ApbRVn4Q2DeponKnUyE9dIKZTJcaKX13LkcIVsXeCtEbRuicep38aDbjLKZJsFrErzuK42C78L5es28ptnYODtqdaPfHBaNfmDjutNWkRr1Qk8jpvDliiYpDGRDRDsb5nAeJzF6_X4XDupTsN6rIOyJfzj6z50dw0f6oiJHHn2DreVi5U8Q7SyzXnWce7B9-fNmOHoF7NX_jg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NTxsxEB2h5AAcKkopTaHUSNzQinjtXe8eowgUCuQCSHCyvLa3CYLdKCQH_n1n9iMqUpsDV69nZc3YM2_kmWeAE-sSZ5SLA8mVDaQXaWAizFKMlxhgRCpSSd3IN-N4dC9_PUQPGzBse2GorLLx_bVPr7x1M3LWaPNsNp1Sjy-eNpWicxXEWIMpUJfYqWQHuoPLq9F4dZlAN291pQcPSKDpnanLvJ7slFi7eVJxeNKL2f-OT__Dn1UcutiBTw2AZIN6jZ9hwxe7sDls323bhe2_KAa_wOPtkriMyzkz7rWcVw6ClTmbTcrX2QSBJsveWE70jJM3N0f8GdgSRx0zhWPPqPaJKZYvgaMstRp_Mb8L6kzze3B_cX43HAXNcwqBlWm4QIfrRd9LI7xV1uBJllkoED8lzuZc2LjvPYIXa4TiKZpKZE4ZtK_HVDVUoYvEV-gUZeG_AfM2TVTuZCKsl1Yok6GgldZz53JEbT3grRK1bbjG6cmLZ90WlT1pUrwmxeu-0qj4HpyuZGY108ba2VFrG_1uv2gMBWvljltDarQL3Y6YwpdLmqQwlw0R8KyZw3mcxBj4-z3Yr3fBaq2C4Cf-4fsHV_YTNkd3N9f6-nJ8dQBb9IV6Hnl0CJ3FfOl_IPhZZEfN5v4Dp1sCTg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Superior+adsorption+of+phosphate+by+ferrihydrite-coated+and+lanthanum-decorated+magnetite&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Fu%2C+Haoyang&rft.au=Yang%2C+Yixuan&rft.au=Zhu%2C+Runliang&rft.au=Liu%2C+Jing&rft.date=2018-11-15&rft.issn=0021-9797&rft.volume=530+p.704-713&rft.spage=704&rft.epage=713&rft_id=info:doi/10.1016%2Fj.jcis.2018.07.025&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon