Superior adsorption of phosphate by ferrihydrite-coated and lanthanum-decorated magnetite
[Display omitted] Present study reports the successful development of a novel lanthanum (La)-based magnetic adsorbent and its use for phosphate removal from water. For its synthesis, natural magnetite (Mag), Fe3O4, was subjected to partial dissolution in HCl solution and the obtained suspension was...
Saved in:
Published in | Journal of colloid and interface science Vol. 530; pp. 704 - 713 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.11.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0021-9797 1095-7103 1095-7103 |
DOI | 10.1016/j.jcis.2018.07.025 |
Cover
Loading…
Abstract | [Display omitted]
Present study reports the successful development of a novel lanthanum (La)-based magnetic adsorbent and its use for phosphate removal from water. For its synthesis, natural magnetite (Mag), Fe3O4, was subjected to partial dissolution in HCl solution and the obtained suspension was mixed with an alkaline solution for in-situ synthesis of ferrihydrite (Fh)-coated Mag (Mag@Fh). Mag@Fh was then decorated with La (hydr)oxides followed by calcination to produce Fh-coated and La-decorated Mag (Mag@Fh-La). Obtained Mag@Fh-La represented high phosphate adsorption capacity (44.8 mg P/g at 15.7% La in its structure) and La usage efficiency. Moreover, Mag@Fh-La retained its high adsorption capacity (>35.0 mg P/g) over a wide range of equilibrium solution pH (3.2–10.7). The combination of FTIR, XPS analysis and adsorption experiments revealed that ligand exchange and electrostatic attraction were the main mechanisms that jointly facilitated the adsorption of phosphate. Adsorption-desorption cycle studies confirmed the well-retained adsorption efficiency of regenerated Mag@Fh-La for repeated applications. Final experiments with real domestic wastewater (initial phosphate concentration of 1.7 mg/L) revealed that 0.2 g/L Mag@Fh-La efficiently reduced the phosphate concentration to below 0.02 mg/L. Overall, this work clearly highlights that the synthesized novel adsorbent has promising applications in phosphate removal from real wastewater. |
---|---|
AbstractList | Present study reports the successful development of a novel lanthanum (La)-based magnetic adsorbent and its use for phosphate removal from water. For its synthesis, natural magnetite (Mag), Fe₃O₄, was subjected to partial dissolution in HCl solution and the obtained suspension was mixed with an alkaline solution for in-situ synthesis of ferrihydrite (Fh)-coated Mag (Mag@Fh). Mag@Fh was then decorated with La (hydr)oxides followed by calcination to produce Fh-coated and La-decorated Mag (Mag@Fh-La). Obtained Mag@Fh-La represented high phosphate adsorption capacity (44.8 mg P/g at 15.7% La in its structure) and La usage efficiency. Moreover, Mag@Fh-La retained its high adsorption capacity (>35.0 mg P/g) over a wide range of equilibrium solution pH (3.2–10.7). The combination of FTIR, XPS analysis and adsorption experiments revealed that ligand exchange and electrostatic attraction were the main mechanisms that jointly facilitated the adsorption of phosphate. Adsorption-desorption cycle studies confirmed the well-retained adsorption efficiency of regenerated Mag@Fh-La for repeated applications. Final experiments with real domestic wastewater (initial phosphate concentration of 1.7 mg/L) revealed that 0.2 g/L Mag@Fh-La efficiently reduced the phosphate concentration to below 0.02 mg/L. Overall, this work clearly highlights that the synthesized novel adsorbent has promising applications in phosphate removal from real wastewater. Present study reports the successful development of a novel lanthanum (La)-based magnetic adsorbent and its use for phosphate removal from water. For its synthesis, natural magnetite (Mag), Fe O , was subjected to partial dissolution in HCl solution and the obtained suspension was mixed with an alkaline solution for in-situ synthesis of ferrihydrite (Fh)-coated Mag (Mag@Fh). Mag@Fh was then decorated with La (hydr)oxides followed by calcination to produce Fh-coated and La-decorated Mag (Mag@Fh-La). Obtained Mag@Fh-La represented high phosphate adsorption capacity (44.8 mg P/g at 15.7% La in its structure) and La usage efficiency. Moreover, Mag@Fh-La retained its high adsorption capacity (>35.0 mg P/g) over a wide range of equilibrium solution pH (3.2-10.7). The combination of FTIR, XPS analysis and adsorption experiments revealed that ligand exchange and electrostatic attraction were the main mechanisms that jointly facilitated the adsorption of phosphate. Adsorption-desorption cycle studies confirmed the well-retained adsorption efficiency of regenerated Mag@Fh-La for repeated applications. Final experiments with real domestic wastewater (initial phosphate concentration of 1.7 mg/L) revealed that 0.2 g/L Mag@Fh-La efficiently reduced the phosphate concentration to below 0.02 mg/L. Overall, this work clearly highlights that the synthesized novel adsorbent has promising applications in phosphate removal from real wastewater. Present study reports the successful development of a novel lanthanum (La)-based magnetic adsorbent and its use for phosphate removal from water. For its synthesis, natural magnetite (Mag), Fe3O4, was subjected to partial dissolution in HCl solution and the obtained suspension was mixed with an alkaline solution for in-situ synthesis of ferrihydrite (Fh)-coated Mag (Mag@Fh). Mag@Fh was then decorated with La (hydr)oxides followed by calcination to produce Fh-coated and La-decorated Mag (Mag@Fh-La). Obtained Mag@Fh-La represented high phosphate adsorption capacity (44.8 mg P/g at 15.7% La in its structure) and La usage efficiency. Moreover, Mag@Fh-La retained its high adsorption capacity (>35.0 mg P/g) over a wide range of equilibrium solution pH (3.2-10.7). The combination of FTIR, XPS analysis and adsorption experiments revealed that ligand exchange and electrostatic attraction were the main mechanisms that jointly facilitated the adsorption of phosphate. Adsorption-desorption cycle studies confirmed the well-retained adsorption efficiency of regenerated Mag@Fh-La for repeated applications. Final experiments with real domestic wastewater (initial phosphate concentration of 1.7 mg/L) revealed that 0.2 g/L Mag@Fh-La efficiently reduced the phosphate concentration to below 0.02 mg/L. Overall, this work clearly highlights that the synthesized novel adsorbent has promising applications in phosphate removal from real wastewater.Present study reports the successful development of a novel lanthanum (La)-based magnetic adsorbent and its use for phosphate removal from water. For its synthesis, natural magnetite (Mag), Fe3O4, was subjected to partial dissolution in HCl solution and the obtained suspension was mixed with an alkaline solution for in-situ synthesis of ferrihydrite (Fh)-coated Mag (Mag@Fh). Mag@Fh was then decorated with La (hydr)oxides followed by calcination to produce Fh-coated and La-decorated Mag (Mag@Fh-La). Obtained Mag@Fh-La represented high phosphate adsorption capacity (44.8 mg P/g at 15.7% La in its structure) and La usage efficiency. Moreover, Mag@Fh-La retained its high adsorption capacity (>35.0 mg P/g) over a wide range of equilibrium solution pH (3.2-10.7). The combination of FTIR, XPS analysis and adsorption experiments revealed that ligand exchange and electrostatic attraction were the main mechanisms that jointly facilitated the adsorption of phosphate. Adsorption-desorption cycle studies confirmed the well-retained adsorption efficiency of regenerated Mag@Fh-La for repeated applications. Final experiments with real domestic wastewater (initial phosphate concentration of 1.7 mg/L) revealed that 0.2 g/L Mag@Fh-La efficiently reduced the phosphate concentration to below 0.02 mg/L. Overall, this work clearly highlights that the synthesized novel adsorbent has promising applications in phosphate removal from real wastewater. [Display omitted] Present study reports the successful development of a novel lanthanum (La)-based magnetic adsorbent and its use for phosphate removal from water. For its synthesis, natural magnetite (Mag), Fe3O4, was subjected to partial dissolution in HCl solution and the obtained suspension was mixed with an alkaline solution for in-situ synthesis of ferrihydrite (Fh)-coated Mag (Mag@Fh). Mag@Fh was then decorated with La (hydr)oxides followed by calcination to produce Fh-coated and La-decorated Mag (Mag@Fh-La). Obtained Mag@Fh-La represented high phosphate adsorption capacity (44.8 mg P/g at 15.7% La in its structure) and La usage efficiency. Moreover, Mag@Fh-La retained its high adsorption capacity (>35.0 mg P/g) over a wide range of equilibrium solution pH (3.2–10.7). The combination of FTIR, XPS analysis and adsorption experiments revealed that ligand exchange and electrostatic attraction were the main mechanisms that jointly facilitated the adsorption of phosphate. Adsorption-desorption cycle studies confirmed the well-retained adsorption efficiency of regenerated Mag@Fh-La for repeated applications. Final experiments with real domestic wastewater (initial phosphate concentration of 1.7 mg/L) revealed that 0.2 g/L Mag@Fh-La efficiently reduced the phosphate concentration to below 0.02 mg/L. Overall, this work clearly highlights that the synthesized novel adsorbent has promising applications in phosphate removal from real wastewater. |
Author | Yang, Yixuan Liu, Jing He, Hongping Fu, Haoyang Usman, Muhammad Chen, Qingze Zhu, Runliang |
Author_xml | – sequence: 1 givenname: Haoyang surname: Fu fullname: Fu, Haoyang organization: CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Material, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China – sequence: 2 givenname: Yixuan surname: Yang fullname: Yang, Yixuan organization: CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Material, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China – sequence: 3 givenname: Runliang surname: Zhu fullname: Zhu, Runliang email: zhurl@gig.ac.cn organization: CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Material, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China – sequence: 4 givenname: Jing surname: Liu fullname: Liu, Jing organization: CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Material, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China – sequence: 5 givenname: Muhammad surname: Usman fullname: Usman, Muhammad organization: Environmental Mineralogy, Center for Applied Geosciences, University of Tübingen, 72074 Tübingen, Germany – sequence: 6 givenname: Qingze surname: Chen fullname: Chen, Qingze organization: CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Material, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China – sequence: 7 givenname: Hongping orcidid: 0000-0002-7057-7687 surname: He fullname: He, Hongping organization: CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Material, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30015156$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFu1DAQhi1URLeFF-CAcuSS4LHjOJG4oApopUocgAMnyzuesF5t4mA7SPv2eNn2wqGcPBp9_8j6_it2MYeZGHsNvAEO3bt9s0efGsGhb7huuFDP2Ab4oGoNXF6wDecC6kEP-pJdpbTnHECp4QW7lGVUoLoN-_F1XSj6ECvrUohL9mGuwlgtu5CWnc1UbY_VSDH63dFFn6nGULausrOrDnbOOzuvU-0IQ_y7n-zPmXIBX7Lnoz0kevXwXrPvnz5-u7mt7798vrv5cF9jO4hcAyfJqbWSUKPtpWi3Qraq6x2OILHjRP0g0UoNg6VWbp22iJaUkEILp-Q1e3u-u8Twa6WUzeQT0qF8jsKajADo-k62Rcl_Ua6LFNGDKOibB3TdTuTMEv1k49E8mitAfwYwhpQijQZ9tid9OVp_MMDNqSSzN6eSzKkkw7UpJZWo-Cf6eP3J0PtziIrL356iSehpRnI-Embjgn8q_gf4T6ui |
CitedBy_id | crossref_primary_10_1016_j_jece_2024_112571 crossref_primary_10_1016_j_jcis_2022_01_149 crossref_primary_10_1016_j_scitotenv_2022_154786 crossref_primary_10_1039_C8CC04642E crossref_primary_10_1021_acs_jafc_3c00454 crossref_primary_10_1016_j_cej_2021_133166 crossref_primary_10_1016_j_colsurfa_2018_10_082 crossref_primary_10_1016_j_seppur_2024_128146 crossref_primary_10_1016_j_chemosphere_2023_138378 crossref_primary_10_1016_j_scitotenv_2020_137778 crossref_primary_10_1016_j_jclepro_2022_133345 crossref_primary_10_1007_s11270_024_07617_0 crossref_primary_10_1016_j_jallcom_2021_158670 crossref_primary_10_1016_j_horiz_2022_100011 crossref_primary_10_1016_j_colsurfa_2019_06_018 crossref_primary_10_2139_ssrn_3980081 crossref_primary_10_1016_j_cinorg_2025_100089 crossref_primary_10_1016_j_colsurfa_2020_125736 crossref_primary_10_1016_j_inoche_2020_108053 crossref_primary_10_1016_j_biortech_2020_124232 crossref_primary_10_1016_j_seppur_2023_126253 crossref_primary_10_1016_j_chemosphere_2022_134987 crossref_primary_10_1016_j_reactfunctpolym_2020_104675 crossref_primary_10_1039_D3NJ05262A crossref_primary_10_3390_app9112220 crossref_primary_10_1016_j_jenvman_2020_111909 crossref_primary_10_1016_j_scitotenv_2022_154765 crossref_primary_10_1016_j_jallcom_2019_152745 crossref_primary_10_1007_s11705_022_2231_6 crossref_primary_10_3390_w16030418 crossref_primary_10_1016_j_seppur_2025_131820 crossref_primary_10_1039_D4RA01929F crossref_primary_10_1016_j_chemosphere_2021_131281 crossref_primary_10_1016_j_surfin_2021_101568 crossref_primary_10_1016_j_jenvman_2025_124830 crossref_primary_10_2166_wst_2021_180 crossref_primary_10_1016_j_colsurfa_2020_126056 crossref_primary_10_1007_s11356_022_23124_3 crossref_primary_10_1016_j_scitotenv_2021_148281 crossref_primary_10_1016_j_jwpe_2022_103094 crossref_primary_10_1039_D2NJ03555C crossref_primary_10_1016_j_molliq_2019_112111 crossref_primary_10_1071_SR22011 crossref_primary_10_2139_ssrn_3992605 crossref_primary_10_1016_j_scitotenv_2019_06_042 crossref_primary_10_1016_j_seppur_2024_128240 crossref_primary_10_1016_j_chemosphere_2020_128378 crossref_primary_10_1021_acsomega_2c04985 crossref_primary_10_1016_j_jenvman_2021_114404 crossref_primary_10_1016_j_seppur_2023_125187 crossref_primary_10_1016_j_scitotenv_2020_138633 crossref_primary_10_1016_j_jenvman_2019_109369 crossref_primary_10_1016_j_micromeso_2020_110145 crossref_primary_10_1007_s11164_019_04074_x crossref_primary_10_1016_j_eti_2021_101875 crossref_primary_10_1016_j_cclet_2021_01_046 crossref_primary_10_1039_D1RA04279C crossref_primary_10_1016_j_cej_2021_130009 crossref_primary_10_1016_j_chemosphere_2024_143126 crossref_primary_10_1016_j_scitotenv_2024_172333 crossref_primary_10_1021_acsomega_9b03411 crossref_primary_10_1016_j_envres_2023_116252 crossref_primary_10_1016_j_watres_2024_121614 crossref_primary_10_1007_s42773_022_00177_8 crossref_primary_10_1016_j_jece_2021_106895 crossref_primary_10_1007_s11356_024_32346_6 crossref_primary_10_1016_j_jphotochem_2020_112434 crossref_primary_10_1016_j_chemosphere_2021_131661 crossref_primary_10_1016_j_clay_2019_105420 crossref_primary_10_1016_j_scitotenv_2024_174747 crossref_primary_10_1039_D3NJ05213C crossref_primary_10_1016_j_chemosphere_2024_143013 crossref_primary_10_1016_j_jes_2024_05_014 crossref_primary_10_1016_j_molliq_2019_111684 crossref_primary_10_1016_j_jhazmat_2020_122129 crossref_primary_10_1038_s41598_025_87754_6 crossref_primary_10_1016_j_molliq_2022_120730 crossref_primary_10_1016_j_chemosphere_2019_125001 crossref_primary_10_1016_j_ijbiomac_2024_136117 crossref_primary_10_3390_molecules28176241 crossref_primary_10_1016_j_scitotenv_2019_02_362 crossref_primary_10_1016_j_cej_2020_124193 crossref_primary_10_1080_10643389_2022_2115271 crossref_primary_10_1016_j_cej_2021_129026 crossref_primary_10_1021_acsomega_0c01399 crossref_primary_10_3389_fchem_2024_1471994 crossref_primary_10_1016_j_cej_2020_126600 crossref_primary_10_5004_dwt_2023_29997 crossref_primary_10_1016_j_apcatb_2020_118891 crossref_primary_10_1016_j_jclepro_2021_128777 crossref_primary_10_1016_j_seppur_2024_128570 crossref_primary_10_1007_s11356_020_09635_x crossref_primary_10_1016_j_jenvman_2019_110043 crossref_primary_10_1016_j_seppur_2024_130642 crossref_primary_10_1039_D4NJ04152F crossref_primary_10_1016_j_jenvman_2022_117206 crossref_primary_10_1016_j_seppur_2022_121339 crossref_primary_10_1007_s00339_024_08199_8 crossref_primary_10_1016_j_scitotenv_2018_11_030 crossref_primary_10_1016_j_inoche_2025_114364 crossref_primary_10_1016_j_seppur_2024_126938 crossref_primary_10_1016_j_jwpe_2024_106923 crossref_primary_10_1016_j_surfin_2024_104566 crossref_primary_10_1007_s11356_020_07945_8 crossref_primary_10_2166_aqua_2021_146 crossref_primary_10_1016_j_cej_2022_137519 crossref_primary_10_1016_j_psep_2022_02_034 crossref_primary_10_1016_j_cej_2021_133538 crossref_primary_10_1039_D1MA00329A crossref_primary_10_1016_j_apsusc_2023_158459 crossref_primary_10_1016_j_scitotenv_2020_136839 crossref_primary_10_1016_j_cep_2022_109172 crossref_primary_10_3390_inorganics11010014 crossref_primary_10_3390_molecules27217562 crossref_primary_10_1016_j_apcatb_2020_119645 crossref_primary_10_1016_j_envint_2020_106115 crossref_primary_10_1016_j_surfin_2022_102438 crossref_primary_10_1016_j_pnsc_2023_12_014 crossref_primary_10_1007_s11356_023_31697_w crossref_primary_10_1016_j_seppur_2024_128668 crossref_primary_10_1016_j_envres_2018_11_013 crossref_primary_10_1016_j_jhazmat_2019_121952 crossref_primary_10_1007_s11356_019_06955_5 crossref_primary_10_1016_j_scitotenv_2024_172025 crossref_primary_10_1016_j_envpol_2023_121775 crossref_primary_10_1016_j_chemosphere_2020_128551 crossref_primary_10_5004_dwt_2020_26376 crossref_primary_10_1080_09593330_2021_1996468 crossref_primary_10_1088_1757_899X_869_4_042023 crossref_primary_10_1016_j_biortech_2024_131075 crossref_primary_10_1016_j_cej_2019_122375 crossref_primary_10_1016_j_inoche_2022_110208 crossref_primary_10_1016_j_jclepro_2022_135496 crossref_primary_10_1080_09593330_2019_1575919 crossref_primary_10_1016_j_isci_2025_111762 crossref_primary_10_1039_C8EN01198B crossref_primary_10_1007_s11356_020_08102_x crossref_primary_10_1016_j_jwpe_2022_103001 crossref_primary_10_1016_j_jcis_2020_04_050 crossref_primary_10_1016_j_jenvman_2021_113723 crossref_primary_10_1016_j_jece_2021_105267 crossref_primary_10_1021_acsestengg_4c00321 crossref_primary_10_1007_s41204_025_00411_1 crossref_primary_10_1039_C8RA10400J crossref_primary_10_1016_j_cej_2021_134439 crossref_primary_10_1007_s00128_020_03036_z crossref_primary_10_1016_j_cplett_2024_141847 crossref_primary_10_1016_j_seppur_2025_132066 crossref_primary_10_1016_j_apsusc_2023_157591 crossref_primary_10_1016_j_scitotenv_2020_142846 crossref_primary_10_3390_w16202932 crossref_primary_10_1155_2021_1764647 crossref_primary_10_1016_j_cej_2025_161229 crossref_primary_10_1007_s11356_020_07676_w crossref_primary_10_1016_j_jclepro_2023_135857 crossref_primary_10_1016_j_envres_2020_110529 crossref_primary_10_1016_j_colsurfa_2019_124344 crossref_primary_10_1007_s11356_021_15364_6 crossref_primary_10_1016_j_envpol_2019_113874 crossref_primary_10_1007_s11356_023_30293_2 crossref_primary_10_1557_s43578_021_00203_8 crossref_primary_10_1016_j_scitotenv_2022_155835 crossref_primary_10_1016_j_seppur_2022_122248 crossref_primary_10_1007_s10904_022_02474_y crossref_primary_10_2166_wst_2020_435 crossref_primary_10_3390_w15132376 crossref_primary_10_1080_03067319_2022_2130691 crossref_primary_10_1016_j_watres_2023_119899 crossref_primary_10_1016_j_scitotenv_2023_169841 crossref_primary_10_1016_j_jece_2024_112132 crossref_primary_10_1002_slct_202101116 crossref_primary_10_1016_j_cjche_2024_02_013 crossref_primary_10_1016_j_jenvman_2020_111130 crossref_primary_10_1016_j_envpol_2020_114809 crossref_primary_10_1016_j_biortech_2022_127316 crossref_primary_10_1016_j_cej_2022_138658 crossref_primary_10_1016_j_jcis_2020_05_008 crossref_primary_10_1039_D2EW00624C crossref_primary_10_1007_s10876_025_02775_5 crossref_primary_10_1016_j_scitotenv_2020_139636 crossref_primary_10_1016_j_jece_2021_105721 crossref_primary_10_1016_j_jenvman_2019_109799 crossref_primary_10_1016_j_colsurfa_2020_125144 crossref_primary_10_1016_j_seppur_2023_125478 crossref_primary_10_1016_j_seppur_2023_124702 crossref_primary_10_1007_s12517_020_5182_6 crossref_primary_10_2166_wst_2022_173 crossref_primary_10_1016_j_chemosphere_2024_142202 crossref_primary_10_1080_10426507_2021_1989683 crossref_primary_10_1016_j_micromeso_2024_113483 crossref_primary_10_1016_j_jre_2018_12_019 crossref_primary_10_1016_j_cej_2020_124915 crossref_primary_10_1016_j_scitotenv_2020_138892 crossref_primary_10_1021_acsomega_3c00788 crossref_primary_10_1016_j_cej_2019_123305 crossref_primary_10_1007_s10570_020_03094_w crossref_primary_10_1016_j_scitotenv_2020_139749 crossref_primary_10_1016_j_ijbiomac_2020_11_209 crossref_primary_10_1016_j_surfin_2023_103582 crossref_primary_10_1016_j_mineng_2021_107316 crossref_primary_10_1007_s13201_022_01642_2 crossref_primary_10_1016_j_jwpe_2018_10_008 crossref_primary_10_1080_10643389_2020_1864958 crossref_primary_10_1016_j_jwpe_2022_103319 crossref_primary_10_1007_s10904_022_02346_5 crossref_primary_10_1016_j_jece_2023_111418 crossref_primary_10_1088_1361_6528_ace059 crossref_primary_10_1016_j_cej_2020_127530 crossref_primary_10_1016_j_jece_2022_107329 crossref_primary_10_1016_j_seppur_2023_123529 crossref_primary_10_2166_wst_2020_467 crossref_primary_10_1016_j_jcis_2022_01_033 crossref_primary_10_1016_j_jenvman_2024_120938 crossref_primary_10_1016_j_jwpe_2023_103512 crossref_primary_10_1016_j_scitotenv_2021_144974 crossref_primary_10_3390_ma18061326 crossref_primary_10_1016_j_jhazmat_2022_129090 crossref_primary_10_1016_j_cej_2024_154956 crossref_primary_10_1016_j_ijbiomac_2024_138918 crossref_primary_10_1088_2053_1591_ac1533 crossref_primary_10_1021_acsomega_0c04842 crossref_primary_10_1088_2053_1591_ad85c3 |
Cites_doi | 10.1016/j.chemosphere.2015.09.083 10.1016/j.chemosphere.2007.04.022 10.1080/10643389.2012.741311 10.1016/j.cej.2012.11.067 10.1126/science.1142525 10.1039/c0jm02718a 10.1016/j.jhazmat.2009.02.025 10.1016/S0008-8846(00)00225-8 10.1039/C4TA07083F 10.1016/0021-9797(82)90085-6 10.1007/s002530051052 10.1007/s10853-017-0966-0 10.1039/c4ta00326h 10.1016/j.jhazmat.2008.01.061 10.1016/j.watres.2017.09.034 10.1016/j.jallcom.2009.12.175 10.1016/j.jhazmat.2009.03.057 10.1016/j.jcis.2014.02.020 10.1016/j.chemosphere.2014.02.024 10.1016/j.cej.2017.10.117 10.1021/acssuschemeng.5b00932 10.1016/j.biortech.2009.02.030 10.1016/j.cej.2013.09.077 10.1016/j.chemosphere.2016.02.004 10.1021/es401301z 10.1016/j.watres.2017.09.050 10.1016/S0043-1354(97)00271-6 10.1016/j.jmmm.2006.05.001 10.1016/j.powtec.2014.09.024 10.1016/j.jcis.2017.11.003 10.1021/acssuschemeng.5b01324 10.1016/j.cej.2011.11.099 10.1016/j.watres.2017.12.008 10.4028/www.scientific.net/AMM.618.24 10.1021/es048018n 10.1021/acs.chemrev.7b00224 10.1016/j.colsurfa.2007.05.027 10.1021/es800924c 10.1016/j.jcis.2015.11.043 10.1021/acs.est.6b05623 10.1039/c2jm16681j 10.1016/j.cej.2017.01.043 10.1016/j.clay.2009.09.009 10.1002/3527602097 10.1016/S1001-0742(09)60141-8 10.1016/j.cej.2012.01.066 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Inc. Copyright © 2018 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright © 2018 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jcis.2018.07.025 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 713 |
ExternalDocumentID | 30015156 10_1016_j_jcis_2018_07_025 S0021979718307811 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ WH7 XPP YQT ZMT ZU3 ~02 ~G- .GJ 29K 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CAG CITATION COF D-I FEDTE FGOYB G-2 HLY HVGLF HZ~ H~9 NDZJH NEJ R2- SCB SCE SEW SSH VH1 WUQ ZGI ZXP NPM 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c492t-10e30e4a3ec7ca8324b234568dcf13c60ee893ca3719ae43bd7accae523272d53 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Tue Aug 05 09:31:00 EDT 2025 Fri Jul 11 01:41:08 EDT 2025 Wed Feb 19 02:43:06 EST 2025 Tue Jul 01 01:18:34 EDT 2025 Thu Apr 24 22:56:28 EDT 2025 Fri Feb 23 02:47:34 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Ferrihydrite Natural magnetite Lanthanum Adsorption Phosphate |
Language | English |
License | Copyright © 2018 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c492t-10e30e4a3ec7ca8324b234568dcf13c60ee893ca3719ae43bd7accae523272d53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7057-7687 |
PMID | 30015156 |
PQID | 2071562812 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2116863410 proquest_miscellaneous_2071562812 pubmed_primary_30015156 crossref_citationtrail_10_1016_j_jcis_2018_07_025 crossref_primary_10_1016_j_jcis_2018_07_025 elsevier_sciencedirect_doi_10_1016_j_jcis_2018_07_025 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-15 |
PublicationDateYYYYMMDD | 2018-11-15 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of colloid and interface science |
PublicationTitleAlternate | J Colloid Interface Sci |
PublicationYear | 2018 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Totlani, Mehta, Mandavgane (b0170) 2012; 181–182 Usman, Byrne, Chaudhary, Orsetti, Hanna, Ruby, Kappler, Haderlein (b0130) 2018 Xie, Wang, Fang, Li, Wu (b0185) 2014; 423 Michel, Ehm, Antao, Lee, Chupas, Liu, Strongin, Schoonen, Phillips, Parise (b0150) 2007; 316 Huang, Wang, Zhu, Li, Yao, Rudolph, Haghseresht (b0040) 2008; 158 R.M. Cornell, U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, 2003. Qiu, Liang, Yu, Zhang, Song, Chen (b0200) 2017; 315 Li, Feng, Yan, Sparks, Phillips (b0005) 2013; 47 Wu, Lam, Lee, Lau (b0235) 2007; 69 Ye, Cong, Zhang, Hoffmann, Zeng, Wu, Zhang, Fang (b0020) 2015; 3 Acelas, Martin, López, Jefferson (b0165) 2015; 119 Fang, Huang, Holm, Yang, Hansen, Wang (b0195) 2015; 3 Jayson, Lawless, Fairhurst (b0050) 1982; 86 Dong, Wang, Zhao, Zhou, Zheng (b0145) 2017; 126 Liu, Zhu, Xu, Xu, Ge, Xi, Zhu, He (b0140) 2016; 144 Loganathan, Vigneswaran, Kandasamy, Bolan (b0030) 2014; 44 Zong, Liu, Wang, Yang, Jiang, Fu (b0090) 2017; 52 Huang, Li, Liu, Tao, Zhu, Yang, Zhang (b0180) 2014; 236 Rao, Jang, Lee, Yi, Jeong (b0210) 2010; 496 Chen, Huo, Li, Wang (b0095) 2016; 4 Liu, Zhao, Jiang (b0120) 2008; 42 Maity, Agrawal (b0125) 2007; 308 Liu, Chen, Wang, Zheng, Yang (b0105) 2018; 335 Xu, Zhang, Mortimer, Pan (b0085) 2017; 51 Zhang, Zhou, Liu, Chang, Wan, Chen (b0215) 2012; 185–186 Shin, Karthikeyan, Tshabalala (b0060) 2005; 39 Wu, Fang, Fortner, Guan, Lo (b0115) 2017; 126 Uludag-Demirer, Othman (b0010) 2009; 100 Xie, Lin, Li, Wu, Kong (b0190) 2014; 269 Huang, Zhu, Tang, Yu, Wang, Li, Zhang (b0100) 2014; 2 Wang, Shen, Shen, Li (b0155) 2016; 150 Li, Ru, Yin, Liu, Wang, Zhang (b0230) 2009; 168 van Loosdrecht, Hooijmans, Brdjanovic, Heijnen (b0015) 1997; 48 Agyei, Strydom, Potgieter (b0045) 2000; 30 Haghseresht, Wang, Do (b0080) 2009; 46 Sakadevan, Bavor (b0035) 1998; 32 Zhu, Zhu, Zhu, Ge, Wang (b0025) 2009; 168 Ou, Zhou, Mao, Wang, Xia, Min (b0055) 2007; 308 Lai, Xie, Chi, Gu, Wu (b0065) 2016; 465 Wang, Li, Harrington, Liu, Parise, Feng, Sparks (b0160) 2013; 47 Zhao, Li, Li (b0205) 2014; 618 Yang, Yuan, Chen, Zou, Yuan, Yu (b0225) 2012; 22 Liu, Zhou, Chen, Zhang, Chang (b0075) 2013; 215–216 Zhang, Shen, Shan, Chen, Mei, Lei, Wang (b0175) 2010; 22 Goscianska, Ptaszkowska-Koniarz, Frankowski, Franus, Panek, Franus (b0070) 2018; 513 Fang, Liu, Li, Xu, Huang, Wang (b0110) 2018; 130 Yang, Zhou, Zhao, Zhang, Yin, Wei, Qian, Wang, Yu (b0220) 2011; 21 Qiu (10.1016/j.jcis.2018.07.025_b0200) 2017; 315 Haghseresht (10.1016/j.jcis.2018.07.025_b0080) 2009; 46 Maity (10.1016/j.jcis.2018.07.025_b0125) 2007; 308 Huang (10.1016/j.jcis.2018.07.025_b0180) 2014; 236 Agyei (10.1016/j.jcis.2018.07.025_b0045) 2000; 30 Wang (10.1016/j.jcis.2018.07.025_b0155) 2016; 150 Xu (10.1016/j.jcis.2018.07.025_b0085) 2017; 51 Liu (10.1016/j.jcis.2018.07.025_b0140) 2016; 144 Zhang (10.1016/j.jcis.2018.07.025_b0175) 2010; 22 Wu (10.1016/j.jcis.2018.07.025_b0115) 2017; 126 Liu (10.1016/j.jcis.2018.07.025_b0075) 2013; 215–216 Chen (10.1016/j.jcis.2018.07.025_b0095) 2016; 4 Dong (10.1016/j.jcis.2018.07.025_b0145) 2017; 126 Shin (10.1016/j.jcis.2018.07.025_b0060) 2005; 39 Xie (10.1016/j.jcis.2018.07.025_b0185) 2014; 423 van Loosdrecht (10.1016/j.jcis.2018.07.025_b0015) 1997; 48 Goscianska (10.1016/j.jcis.2018.07.025_b0070) 2018; 513 Liu (10.1016/j.jcis.2018.07.025_b0105) 2018; 335 Liu (10.1016/j.jcis.2018.07.025_b0120) 2008; 42 Usman (10.1016/j.jcis.2018.07.025_b0130) 2018 Fang (10.1016/j.jcis.2018.07.025_b0195) 2015; 3 Wang (10.1016/j.jcis.2018.07.025_b0160) 2013; 47 Xie (10.1016/j.jcis.2018.07.025_b0190) 2014; 269 Yang (10.1016/j.jcis.2018.07.025_b0220) 2011; 21 Ye (10.1016/j.jcis.2018.07.025_b0020) 2015; 3 Totlani (10.1016/j.jcis.2018.07.025_b0170) 2012; 181–182 Yang (10.1016/j.jcis.2018.07.025_b0225) 2012; 22 Huang (10.1016/j.jcis.2018.07.025_b0040) 2008; 158 Loganathan (10.1016/j.jcis.2018.07.025_b0030) 2014; 44 Zhang (10.1016/j.jcis.2018.07.025_b0215) 2012; 185–186 Li (10.1016/j.jcis.2018.07.025_b0005) 2013; 47 Huang (10.1016/j.jcis.2018.07.025_b0100) 2014; 2 10.1016/j.jcis.2018.07.025_b0135 Acelas (10.1016/j.jcis.2018.07.025_b0165) 2015; 119 Uludag-Demirer (10.1016/j.jcis.2018.07.025_b0010) 2009; 100 Lai (10.1016/j.jcis.2018.07.025_b0065) 2016; 465 Michel (10.1016/j.jcis.2018.07.025_b0150) 2007; 316 Sakadevan (10.1016/j.jcis.2018.07.025_b0035) 1998; 32 Zong (10.1016/j.jcis.2018.07.025_b0090) 2017; 52 Jayson (10.1016/j.jcis.2018.07.025_b0050) 1982; 86 Zhao (10.1016/j.jcis.2018.07.025_b0205) 2014; 618 Fang (10.1016/j.jcis.2018.07.025_b0110) 2018; 130 Ou (10.1016/j.jcis.2018.07.025_b0055) 2007; 308 Rao (10.1016/j.jcis.2018.07.025_b0210) 2010; 496 Wu (10.1016/j.jcis.2018.07.025_b0235) 2007; 69 Zhu (10.1016/j.jcis.2018.07.025_b0025) 2009; 168 Li (10.1016/j.jcis.2018.07.025_b0230) 2009; 168 |
References_xml | – volume: 32 start-page: 393 year: 1998 end-page: 399 ident: b0035 article-title: Phosphate adsorption characteristics of soils, slags and zeolite to be used as substrates in constructed wetland systems publication-title: Water Res. – volume: 39 start-page: 6273 year: 2005 end-page: 6279 ident: b0060 article-title: Orthophosphate sorption onto lanthanum-treated lignocellulosic sorbents publication-title: Environ. Sci. Technol. – volume: 496 start-page: 251 year: 2010 end-page: 255 ident: b0210 article-title: Synthesis and photoluminescence characterization of RE publication-title: J. Alloy. Compd. – volume: 126 start-page: 433 year: 2017 end-page: 441 ident: b0145 article-title: La publication-title: Water Res. – volume: 236 start-page: 191 year: 2014 end-page: 201 ident: b0180 article-title: Kinetics, isotherm, thermodynamic, and adsorption mechanism studies of La(OH) publication-title: Chem. Eng. J. – volume: 3 start-page: 3324 year: 2015 end-page: 3331 ident: b0020 article-title: Preparation of a new granular acid-activated neutralized red mud and evaluation of its performance for phosphate adsorption publication-title: ACS Sustain. Chem. Eng. – volume: 168 start-page: 1590 year: 2009 end-page: 1594 ident: b0025 article-title: Sorption of naphthalene and phosphate to the CTMAB-Al publication-title: J. Hazard. Mater. – reference: R.M. Cornell, U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, 2003. – volume: 3 start-page: 7505 year: 2015 end-page: 7512 ident: b0195 article-title: Facile upscaled synthesis of layered iron oxide nanosheets and their application in phosphate removal publication-title: J. Mater. Chem. A – volume: 42 start-page: 6949 year: 2008 end-page: 6954 ident: b0120 article-title: Coating Fe publication-title: Environ. Sci. Technol. – volume: 22 start-page: 507 year: 2010 end-page: 511 ident: b0175 article-title: Adsorption behavior of phosphate on Lanthanum(III) doped mesoporous silicates material publication-title: J. Environ. Sci. – volume: 181–182 start-page: 376 year: 2012 end-page: 386 ident: b0170 article-title: Comparative study of adsorption of Ni (II) on RHA and carbon embedded silica obtained from RHA publication-title: Chem. Eng. J. – volume: 48 start-page: 289 year: 1997 end-page: 296 ident: b0015 article-title: Biological phosphate removal processes publication-title: Appl. Microbiol. Biotechnol. – volume: 158 start-page: 35 year: 2008 end-page: 42 ident: b0040 article-title: Phosphate removal from wastewater using red mud publication-title: J. Hazard. Mater. – volume: 144 start-page: 1148 year: 2016 end-page: 1155 ident: b0140 article-title: Co-adsorption of phosphate and zinc(II) on the surface of ferrihydrite publication-title: Chemosphere – volume: 126 start-page: 179 year: 2017 end-page: 188 ident: b0115 article-title: Highly efficient and selective phosphate removal from wastewater by magnetically recoverable La(OH) publication-title: Water Res. – volume: 185–186 start-page: 160 year: 2012 end-page: 167 ident: b0215 article-title: Phosphate adsorption on lanthanum hydroxide-doped activated carbon fiber publication-title: Chem. Eng. J. – volume: 423 start-page: 13 year: 2014 end-page: 19 ident: b0185 article-title: Green synthesis of a novel hybrid sorbent of zeolite/lanthanum hydroxide and its application in the removal and recovery of phosphate from water publication-title: J. Colloid Interf. Sci. – volume: 30 start-page: 823 year: 2000 end-page: 826 ident: b0045 article-title: An investigation of phosphate ion adsorption from aqueous solution by fly ash and slag publication-title: Cem. Concr. Res. – volume: 130 start-page: 243 year: 2018 end-page: 254 ident: b0110 article-title: Magnetite/lanthanum hydroxide for phosphate sequestration and recovery from lake and the attenuation effects of sediment particles publication-title: Water Res. – volume: 308 start-page: 46 year: 2007 end-page: 55 ident: b0125 article-title: Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media publication-title: J. Magn. Magn. Mater. – volume: 513 start-page: 72 year: 2018 end-page: 81 ident: b0070 article-title: Removal of phosphate from water by lanthanum-modified zeolites obtained from fly ash publication-title: J. Colloid Interf. Sci. – volume: 2 start-page: 8839 year: 2014 end-page: 8848 ident: b0100 article-title: Lanthanum-doped ordered mesoporous hollow silica spheres as novel adsorbents for efficient phosphate removal publication-title: J. Mater. Chem. A – volume: 335 start-page: 443 year: 2018 end-page: 449 ident: b0105 article-title: Highly effective wastewater phosphorus removal by phosphorus accumulating organism combined with magnetic sorbent MFC@La(OH) publication-title: Chem. Eng. J. – volume: 4 start-page: 1296 year: 2016 end-page: 1302 ident: b0095 article-title: Selective adsorption and efficient removal of phosphate from aqueous medium with graphene-lanthanum composite publication-title: ACS Sustain. Chem. Eng. – volume: 316 start-page: 1726 year: 2007 end-page: 1729 ident: b0150 article-title: The structure of ferrihydrite, a nanocrystaline material publication-title: Science – volume: 465 start-page: 76 year: 2016 end-page: 82 ident: b0065 article-title: Adsorption of phosphate from water by easily separable Fe publication-title: J. Colloid Interf. Sci. – volume: 168 start-page: 326 year: 2009 end-page: 330 ident: b0230 article-title: Removal of phosphate from polluted water by lanthanum doped vesuvianite publication-title: J. Hazard. Mater. – volume: 618 start-page: 24 year: 2014 end-page: 27 ident: b0205 article-title: Preparation and characterization of magnetite nanoparticles publication-title: Appl. Mech. Mater. – volume: 69 start-page: 289 year: 2007 end-page: 294 ident: b0235 article-title: Removal of phosphate from water by a highly selective La(III)-chelex resin publication-title: Chemosphere – volume: 44 start-page: 847 year: 2014 end-page: 907 ident: b0030 article-title: Removal and recovery of phosphate from water using sorption publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 215–216 start-page: 859 year: 2013 end-page: 867 ident: b0075 article-title: Phosphate adsorption on hydroxyl-iron-lanthanum doped activated carbon fiber publication-title: Chem. Eng. J. – volume: 47 start-page: 10322 year: 2013 end-page: 10331 ident: b0160 article-title: Effect of ferrihydrite crystallite size on phosphate adsorption reactivity publication-title: Environ. Sci. Technol. – volume: 22 start-page: 9983 year: 2012 ident: b0225 article-title: Rationally designed functional macroporous materials as new adsorbents for efficient phosphorus removal publication-title: J. Mater. Chem. – volume: 86 start-page: 397 year: 1982 end-page: 410 ident: b0050 article-title: The adsorption of organic and inorganic phosphates onto a new activated carbon adsorbent publication-title: J. Colloid Interf. Sci. – volume: 21 start-page: 2489 year: 2011 ident: b0220 article-title: A designed nanoporous material for phosphate removal with high efficiency publication-title: J. Mater. Chem. – volume: 100 start-page: 3236 year: 2009 end-page: 3244 ident: b0010 article-title: Removal of ammonium and phosphate from the supernatant of anaerobically digested waste activated sludge by chemical precipitation publication-title: Bioresour. Technol. – volume: 52 start-page: 7294 year: 2017 end-page: 7310 ident: b0090 article-title: Facile preparation and characterization of lanthanum-loaded carboxylated multi-walled carbon nanotubes and their application for the adsorption of phosphate ions publication-title: J. Mater. Sci. – volume: 150 start-page: 1 year: 2016 end-page: 7 ident: b0155 article-title: Phosphate adsorption on lanthanum loaded biochar publication-title: Chemosphere – volume: 269 start-page: 351 year: 2014 end-page: 357 ident: b0190 article-title: Removal and recovery of phosphate from water by activated aluminum oxide and lanthanum oxide publication-title: Powder Technol. – volume: 46 start-page: 369 year: 2009 end-page: 375 ident: b0080 article-title: A novel lanthanum-modified bentonite, Phoslock, for phosphate removal from wastewaters publication-title: Appl. Clay Sci. – volume: 47 start-page: 8308 year: 2013 end-page: 8315 ident: b0005 article-title: Solid-state NMR spectroscopic study of phosphate sorption mechanisms on aluminum (hydr)oxides publication-title: Environ. Sci. Technol. – volume: 308 start-page: 47 year: 2007 end-page: 53 ident: b0055 article-title: Highly efficient removal of phosphate by lanthanum-doped mesoporous SiO publication-title: Colloids Surf., A – year: 2018 ident: b0130 article-title: Magnetite and green rust: synthesis, properties, and environmental applications of mixed-valent iron minerals publication-title: Chem. Rev. – volume: 315 start-page: 345 year: 2017 end-page: 354 ident: b0200 article-title: Preferable phosphate sequestration by nano-La(III) (hydr)oxides modified wheat straw with excellent properties in regeneration publication-title: Chem. Eng. J. – volume: 51 start-page: 3418 year: 2017 end-page: 3425 ident: b0085 article-title: Enhanced phosphorus locking by novel lanthanum/aluminum-hydroxide composite: implications for eutrophication control publication-title: Environ. Sci. Technol. – volume: 119 start-page: 1353 year: 2015 end-page: 1360 ident: b0165 article-title: Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media publication-title: Chemosphere – volume: 144 start-page: 1148 year: 2016 ident: 10.1016/j.jcis.2018.07.025_b0140 article-title: Co-adsorption of phosphate and zinc(II) on the surface of ferrihydrite publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.09.083 – volume: 69 start-page: 289 year: 2007 ident: 10.1016/j.jcis.2018.07.025_b0235 article-title: Removal of phosphate from water by a highly selective La(III)-chelex resin publication-title: Chemosphere doi: 10.1016/j.chemosphere.2007.04.022 – volume: 44 start-page: 847 year: 2014 ident: 10.1016/j.jcis.2018.07.025_b0030 article-title: Removal and recovery of phosphate from water using sorption publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2012.741311 – volume: 215–216 start-page: 859 year: 2013 ident: 10.1016/j.jcis.2018.07.025_b0075 article-title: Phosphate adsorption on hydroxyl-iron-lanthanum doped activated carbon fiber publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.11.067 – volume: 316 start-page: 1726 year: 2007 ident: 10.1016/j.jcis.2018.07.025_b0150 article-title: The structure of ferrihydrite, a nanocrystaline material publication-title: Science doi: 10.1126/science.1142525 – volume: 21 start-page: 2489 year: 2011 ident: 10.1016/j.jcis.2018.07.025_b0220 article-title: A designed nanoporous material for phosphate removal with high efficiency publication-title: J. Mater. Chem. doi: 10.1039/c0jm02718a – volume: 168 start-page: 326 year: 2009 ident: 10.1016/j.jcis.2018.07.025_b0230 article-title: Removal of phosphate from polluted water by lanthanum doped vesuvianite publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2009.02.025 – volume: 30 start-page: 823 year: 2000 ident: 10.1016/j.jcis.2018.07.025_b0045 article-title: An investigation of phosphate ion adsorption from aqueous solution by fly ash and slag publication-title: Cem. Concr. Res. doi: 10.1016/S0008-8846(00)00225-8 – volume: 3 start-page: 7505 year: 2015 ident: 10.1016/j.jcis.2018.07.025_b0195 article-title: Facile upscaled synthesis of layered iron oxide nanosheets and their application in phosphate removal publication-title: J. Mater. Chem. A doi: 10.1039/C4TA07083F – volume: 86 start-page: 397 year: 1982 ident: 10.1016/j.jcis.2018.07.025_b0050 article-title: The adsorption of organic and inorganic phosphates onto a new activated carbon adsorbent publication-title: J. Colloid Interf. Sci. doi: 10.1016/0021-9797(82)90085-6 – volume: 48 start-page: 289 year: 1997 ident: 10.1016/j.jcis.2018.07.025_b0015 article-title: Biological phosphate removal processes publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s002530051052 – volume: 52 start-page: 7294 year: 2017 ident: 10.1016/j.jcis.2018.07.025_b0090 article-title: Facile preparation and characterization of lanthanum-loaded carboxylated multi-walled carbon nanotubes and their application for the adsorption of phosphate ions publication-title: J. Mater. Sci. doi: 10.1007/s10853-017-0966-0 – volume: 2 start-page: 8839 year: 2014 ident: 10.1016/j.jcis.2018.07.025_b0100 article-title: Lanthanum-doped ordered mesoporous hollow silica spheres as novel adsorbents for efficient phosphate removal publication-title: J. Mater. Chem. A doi: 10.1039/c4ta00326h – volume: 158 start-page: 35 year: 2008 ident: 10.1016/j.jcis.2018.07.025_b0040 article-title: Phosphate removal from wastewater using red mud publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2008.01.061 – volume: 126 start-page: 179 year: 2017 ident: 10.1016/j.jcis.2018.07.025_b0115 article-title: Highly efficient and selective phosphate removal from wastewater by magnetically recoverable La(OH)3/Fe3O4 nanocomposites publication-title: Water Res. doi: 10.1016/j.watres.2017.09.034 – volume: 47 start-page: 8308 year: 2013 ident: 10.1016/j.jcis.2018.07.025_b0005 article-title: Solid-state NMR spectroscopic study of phosphate sorption mechanisms on aluminum (hydr)oxides publication-title: Environ. Sci. Technol. – volume: 496 start-page: 251 year: 2010 ident: 10.1016/j.jcis.2018.07.025_b0210 article-title: Synthesis and photoluminescence characterization of RE3+(=Eu3+, Dy3+)-activated Ca3La(VO4)3 phosphors for white light-emitting diodes publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2009.12.175 – volume: 168 start-page: 1590 year: 2009 ident: 10.1016/j.jcis.2018.07.025_b0025 article-title: Sorption of naphthalene and phosphate to the CTMAB-Al13 intercalated bentonites publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2009.03.057 – volume: 423 start-page: 13 year: 2014 ident: 10.1016/j.jcis.2018.07.025_b0185 article-title: Green synthesis of a novel hybrid sorbent of zeolite/lanthanum hydroxide and its application in the removal and recovery of phosphate from water publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2014.02.020 – volume: 119 start-page: 1353 year: 2015 ident: 10.1016/j.jcis.2018.07.025_b0165 article-title: Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media publication-title: Chemosphere doi: 10.1016/j.chemosphere.2014.02.024 – volume: 335 start-page: 443 year: 2018 ident: 10.1016/j.jcis.2018.07.025_b0105 article-title: Highly effective wastewater phosphorus removal by phosphorus accumulating organism combined with magnetic sorbent MFC@La(OH)3 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.10.117 – volume: 3 start-page: 3324 year: 2015 ident: 10.1016/j.jcis.2018.07.025_b0020 article-title: Preparation of a new granular acid-activated neutralized red mud and evaluation of its performance for phosphate adsorption publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.5b00932 – volume: 100 start-page: 3236 year: 2009 ident: 10.1016/j.jcis.2018.07.025_b0010 article-title: Removal of ammonium and phosphate from the supernatant of anaerobically digested waste activated sludge by chemical precipitation publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2009.02.030 – volume: 236 start-page: 191 year: 2014 ident: 10.1016/j.jcis.2018.07.025_b0180 article-title: Kinetics, isotherm, thermodynamic, and adsorption mechanism studies of La(OH)3-modified exfoliated vermiculites as highly efficient phosphate adsorbents publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.09.077 – volume: 150 start-page: 1 year: 2016 ident: 10.1016/j.jcis.2018.07.025_b0155 article-title: Phosphate adsorption on lanthanum loaded biochar publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.02.004 – volume: 47 start-page: 10322 year: 2013 ident: 10.1016/j.jcis.2018.07.025_b0160 article-title: Effect of ferrihydrite crystallite size on phosphate adsorption reactivity publication-title: Environ. Sci. Technol. doi: 10.1021/es401301z – volume: 126 start-page: 433 year: 2017 ident: 10.1016/j.jcis.2018.07.025_b0145 article-title: La3+/La(OH)3 loaded magnetic cationic hydrogel composites for phosphate removal: effect of lanthanum species and mechanistic study publication-title: Water Res. doi: 10.1016/j.watres.2017.09.050 – volume: 32 start-page: 393 year: 1998 ident: 10.1016/j.jcis.2018.07.025_b0035 article-title: Phosphate adsorption characteristics of soils, slags and zeolite to be used as substrates in constructed wetland systems publication-title: Water Res. doi: 10.1016/S0043-1354(97)00271-6 – volume: 308 start-page: 46 year: 2007 ident: 10.1016/j.jcis.2018.07.025_b0125 article-title: Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2006.05.001 – volume: 269 start-page: 351 year: 2014 ident: 10.1016/j.jcis.2018.07.025_b0190 article-title: Removal and recovery of phosphate from water by activated aluminum oxide and lanthanum oxide publication-title: Powder Technol. doi: 10.1016/j.powtec.2014.09.024 – volume: 513 start-page: 72 year: 2018 ident: 10.1016/j.jcis.2018.07.025_b0070 article-title: Removal of phosphate from water by lanthanum-modified zeolites obtained from fly ash publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2017.11.003 – volume: 4 start-page: 1296 year: 2016 ident: 10.1016/j.jcis.2018.07.025_b0095 article-title: Selective adsorption and efficient removal of phosphate from aqueous medium with graphene-lanthanum composite publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.5b01324 – volume: 181–182 start-page: 376 year: 2012 ident: 10.1016/j.jcis.2018.07.025_b0170 article-title: Comparative study of adsorption of Ni (II) on RHA and carbon embedded silica obtained from RHA publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2011.11.099 – volume: 130 start-page: 243 year: 2018 ident: 10.1016/j.jcis.2018.07.025_b0110 article-title: Magnetite/lanthanum hydroxide for phosphate sequestration and recovery from lake and the attenuation effects of sediment particles publication-title: Water Res. doi: 10.1016/j.watres.2017.12.008 – volume: 618 start-page: 24 year: 2014 ident: 10.1016/j.jcis.2018.07.025_b0205 article-title: Preparation and characterization of magnetite nanoparticles publication-title: Appl. Mech. Mater. doi: 10.4028/www.scientific.net/AMM.618.24 – volume: 39 start-page: 6273 year: 2005 ident: 10.1016/j.jcis.2018.07.025_b0060 article-title: Orthophosphate sorption onto lanthanum-treated lignocellulosic sorbents publication-title: Environ. Sci. Technol. doi: 10.1021/es048018n – year: 2018 ident: 10.1016/j.jcis.2018.07.025_b0130 article-title: Magnetite and green rust: synthesis, properties, and environmental applications of mixed-valent iron minerals publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00224 – volume: 308 start-page: 47 year: 2007 ident: 10.1016/j.jcis.2018.07.025_b0055 article-title: Highly efficient removal of phosphate by lanthanum-doped mesoporous SiO2 publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2007.05.027 – volume: 42 start-page: 6949 year: 2008 ident: 10.1016/j.jcis.2018.07.025_b0120 article-title: Coating Fe3O4 Magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water publication-title: Environ. Sci. Technol. doi: 10.1021/es800924c – volume: 465 start-page: 76 year: 2016 ident: 10.1016/j.jcis.2018.07.025_b0065 article-title: Adsorption of phosphate from water by easily separable Fe3O4@SiO2 core/shell magnetic nanoparticles functionalized with hydrous lanthanum oxide publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2015.11.043 – volume: 51 start-page: 3418 year: 2017 ident: 10.1016/j.jcis.2018.07.025_b0085 article-title: Enhanced phosphorus locking by novel lanthanum/aluminum-hydroxide composite: implications for eutrophication control publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b05623 – volume: 22 start-page: 9983 year: 2012 ident: 10.1016/j.jcis.2018.07.025_b0225 article-title: Rationally designed functional macroporous materials as new adsorbents for efficient phosphorus removal publication-title: J. Mater. Chem. doi: 10.1039/c2jm16681j – volume: 315 start-page: 345 year: 2017 ident: 10.1016/j.jcis.2018.07.025_b0200 article-title: Preferable phosphate sequestration by nano-La(III) (hydr)oxides modified wheat straw with excellent properties in regeneration publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.01.043 – volume: 46 start-page: 369 year: 2009 ident: 10.1016/j.jcis.2018.07.025_b0080 article-title: A novel lanthanum-modified bentonite, Phoslock, for phosphate removal from wastewaters publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2009.09.009 – ident: 10.1016/j.jcis.2018.07.025_b0135 doi: 10.1002/3527602097 – volume: 22 start-page: 507 year: 2010 ident: 10.1016/j.jcis.2018.07.025_b0175 article-title: Adsorption behavior of phosphate on Lanthanum(III) doped mesoporous silicates material publication-title: J. Environ. Sci. doi: 10.1016/S1001-0742(09)60141-8 – volume: 185–186 start-page: 160 year: 2012 ident: 10.1016/j.jcis.2018.07.025_b0215 article-title: Phosphate adsorption on lanthanum hydroxide-doped activated carbon fiber publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.01.066 |
SSID | ssj0011559 |
Score | 2.6411347 |
Snippet | [Display omitted]
Present study reports the successful development of a novel lanthanum (La)-based magnetic adsorbent and its use for phosphate removal from... Present study reports the successful development of a novel lanthanum (La)-based magnetic adsorbent and its use for phosphate removal from water. For its... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 704 |
SubjectTerms | adsorbents Adsorption electrostatic interactions Ferrihydrite Fourier transform infrared spectroscopy hydrochloric acid Lanthanum ligands magnetism magnetite municipal wastewater Natural magnetite Phosphate phosphates X-ray photoelectron spectroscopy |
Title | Superior adsorption of phosphate by ferrihydrite-coated and lanthanum-decorated magnetite |
URI | https://dx.doi.org/10.1016/j.jcis.2018.07.025 https://www.ncbi.nlm.nih.gov/pubmed/30015156 https://www.proquest.com/docview/2071562812 https://www.proquest.com/docview/2116863410 |
Volume | 530 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NTxsxEB1FcGg5IEpbCJTISNzQlnjtXe8eUVSUgpoLIKUny2t7m0SwG4XkwIXfzsx-REWiOfS4lr2yZuyZN_LMG4Az6xJnlIsDyZUNpBdpYCKMUoyX6GBEKlJJ1ci_RvHwXl6Po3EHBm0tDKVVNra_tumVtW5GLhppXsynU6rxxdumUjSughhrqgp2qSit7_vLOs2D07NbnebBA5rdFM7UOV4zOyXKbp5UBJ7ULvt95_Qv8Fk5oas92G3QI7usN_gJOr7Yhw-DtmnbPuz8xS_4GX7frojIuFww457KRWUdWJmz-aR8mk8QZbLsmeXEzTh5dgsEn4EtcdQxUzj2gDKfmGL1GDgKUavxR_OnoLI0_wXur37cDYZB00shsDINl2htveh7aYS3yhq8xjILBYKnxNmcCxv3vUfkYo1QPEU9icwpg8r1GKeGKnSR-ApbRVn4Q2DeponKnUyE9dIKZTJcaKX13LkcIVsXeCtEbRuicep38aDbjLKZJsFrErzuK42C78L5es28ptnYODtqdaPfHBaNfmDjutNWkRr1Qk8jpvDliiYpDGRDRDsb5nAeJzF6_X4XDupTsN6rIOyJfzj6z50dw0f6oiJHHn2DreVi5U8Q7SyzXnWce7B9-fNmOHoF7NX_jg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NTxsxEB2h5AAcKkopTaHUSNzQinjtXe8eowgUCuQCSHCyvLa3CYLdKCQH_n1n9iMqUpsDV69nZc3YM2_kmWeAE-sSZ5SLA8mVDaQXaWAizFKMlxhgRCpSSd3IN-N4dC9_PUQPGzBse2GorLLx_bVPr7x1M3LWaPNsNp1Sjy-eNpWicxXEWIMpUJfYqWQHuoPLq9F4dZlAN291pQcPSKDpnanLvJ7slFi7eVJxeNKL2f-OT__Dn1UcutiBTw2AZIN6jZ9hwxe7sDls323bhe2_KAa_wOPtkriMyzkz7rWcVw6ClTmbTcrX2QSBJsveWE70jJM3N0f8GdgSRx0zhWPPqPaJKZYvgaMstRp_Mb8L6kzze3B_cX43HAXNcwqBlWm4QIfrRd9LI7xV1uBJllkoED8lzuZc2LjvPYIXa4TiKZpKZE4ZtK_HVDVUoYvEV-gUZeG_AfM2TVTuZCKsl1Yok6GgldZz53JEbT3grRK1bbjG6cmLZ90WlT1pUrwmxeu-0qj4HpyuZGY108ba2VFrG_1uv2gMBWvljltDarQL3Y6YwpdLmqQwlw0R8KyZw3mcxBj4-z3Yr3fBaq2C4Cf-4fsHV_YTNkd3N9f6-nJ8dQBb9IV6Hnl0CJ3FfOl_IPhZZEfN5v4Dp1sCTg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Superior+adsorption+of+phosphate+by+ferrihydrite-coated+and+lanthanum-decorated+magnetite&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Fu%2C+Haoyang&rft.au=Yang%2C+Yixuan&rft.au=Zhu%2C+Runliang&rft.au=Liu%2C+Jing&rft.date=2018-11-15&rft.issn=0021-9797&rft.volume=530+p.704-713&rft.spage=704&rft.epage=713&rft_id=info:doi/10.1016%2Fj.jcis.2018.07.025&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |