Superior adsorption of phosphate by ferrihydrite-coated and lanthanum-decorated magnetite

[Display omitted] Present study reports the successful development of a novel lanthanum (La)-based magnetic adsorbent and its use for phosphate removal from water. For its synthesis, natural magnetite (Mag), Fe3O4, was subjected to partial dissolution in HCl solution and the obtained suspension was...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 530; pp. 704 - 713
Main Authors Fu, Haoyang, Yang, Yixuan, Zhu, Runliang, Liu, Jing, Usman, Muhammad, Chen, Qingze, He, Hongping
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.11.2018
Subjects
Online AccessGet full text
ISSN0021-9797
1095-7103
1095-7103
DOI10.1016/j.jcis.2018.07.025

Cover

Loading…
More Information
Summary:[Display omitted] Present study reports the successful development of a novel lanthanum (La)-based magnetic adsorbent and its use for phosphate removal from water. For its synthesis, natural magnetite (Mag), Fe3O4, was subjected to partial dissolution in HCl solution and the obtained suspension was mixed with an alkaline solution for in-situ synthesis of ferrihydrite (Fh)-coated Mag (Mag@Fh). Mag@Fh was then decorated with La (hydr)oxides followed by calcination to produce Fh-coated and La-decorated Mag (Mag@Fh-La). Obtained Mag@Fh-La represented high phosphate adsorption capacity (44.8 mg P/g at 15.7% La in its structure) and La usage efficiency. Moreover, Mag@Fh-La retained its high adsorption capacity (>35.0 mg P/g) over a wide range of equilibrium solution pH (3.2–10.7). The combination of FTIR, XPS analysis and adsorption experiments revealed that ligand exchange and electrostatic attraction were the main mechanisms that jointly facilitated the adsorption of phosphate. Adsorption-desorption cycle studies confirmed the well-retained adsorption efficiency of regenerated Mag@Fh-La for repeated applications. Final experiments with real domestic wastewater (initial phosphate concentration of 1.7 mg/L) revealed that 0.2 g/L Mag@Fh-La efficiently reduced the phosphate concentration to below 0.02 mg/L. Overall, this work clearly highlights that the synthesized novel adsorbent has promising applications in phosphate removal from real wastewater.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9797
1095-7103
1095-7103
DOI:10.1016/j.jcis.2018.07.025