Phage display selection of efficient glutamine‐donor substrate peptides for transglutaminase 2

Understanding substrate specificity and identification of natural targets of transglutaminase 2 (TG2), the ubiquitous multifunctional cross‐linking enzyme, which forms isopeptide bonds between protein‐linked glutamine and lysine residues, is crucial in the elucidation of its physiological role. As a...

Full description

Saved in:
Bibliographic Details
Published inProtein science Vol. 15; no. 11; pp. 2466 - 2480
Main Authors Keresztessy, Zsolt, Csősz, Éva, Hársfalvi, Jolán, Csomós, Krisztián, Gray, Joe, Lightowlers, Robert N., Lakey, Jeremy H., Balajthy, Zoltán, Fésüs, László
Format Journal Article
LanguageEnglish
Published Bristol Cold Spring Harbor Laboratory Press 01.11.2006
Blackwell Publishing
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Understanding substrate specificity and identification of natural targets of transglutaminase 2 (TG2), the ubiquitous multifunctional cross‐linking enzyme, which forms isopeptide bonds between protein‐linked glutamine and lysine residues, is crucial in the elucidation of its physiological role. As a novel means of specificity analysis, we adapted the phage display technique to select glutamine‐donor substrates from a random heptapeptide library via binding to recombinant TG2 and elution with a synthetic amine‐donor substrate. Twenty‐six Gln‐containing sequences from the second and third biopanning rounds were susceptible for TG2‐mediated incorporation of 5‐(biotinamido)penthylamine, and the peptides GQQQTPY, GLQQASV, and WQTPMNS were modified most efficiently. A consensus around glutamines was established as pQX(P,T,S)l, which is consistent with identified substrates listed in the TRANSDAB database. Database searches showed that several proteins contain peptides similar to the phage‐selected sequences, and the N‐terminal glutamine‐rich domain of SWI1/SNF1‐related chromatin remodeling proteins was chosen for detailed analysis. MALDI/TOF and tandem mass spectrometry‐based studies of a representative part of the domain, SGYGQQGQTPYYNQQSPHPQQQQPPYS (SnQ1), revealed that Q6, Q8, and Q22 are modified by TG2. Kinetic parameters of SnQ1 transamidation (KMapp = 250 μM, kcat = 18.3 sec−1, and kcat/KMapp = 73,200) classify it as an efficient TG2 substrate. Circular dichroism spectra indicated that SnQ1 has a random coil conformation, supporting its accessibility in the full‐length parental protein. Added together, here we report a novel use of the phage display technology with great potential in transglutaminase research.
Bibliography:These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0961-8368
1469-896X
DOI:10.1110/ps.051818406