Adaptive neuro-fuzzy inference systems for analysis of internal carotid arterial Doppler signals

In this study, a new approach based on adaptive neuro-fuzzy inference system (ANFIS) was presented for detection of internal carotid artery stenosis and occlusion. The internal carotid arterial Doppler signals were recorded from 130 subjects that 45 of them suffered from internal carotid artery sten...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 35; no. 8; pp. 687 - 702
Main Authors Derya Ubeyli, Elif, Güler, Inan
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.10.2005
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this study, a new approach based on adaptive neuro-fuzzy inference system (ANFIS) was presented for detection of internal carotid artery stenosis and occlusion. The internal carotid arterial Doppler signals were recorded from 130 subjects that 45 of them suffered from internal carotid artery stenosis, 44 of them suffered from internal carotid artery occlusion and the rest of them were healthy subjects. The three ANFIS classifiers were used to detect internal carotid artery conditions (normal, stenosis and occlusion) when two features, resistivity and pulsatility indices, defining changes of internal carotid arterial Doppler waveforms were used as inputs. To improve diagnostic accuracy, the fourth ANFIS classifier (combining ANFIS) was trained using the outputs of the three ANFIS classifiers as input data. The proposed ANFIS model combined the neural network adaptive capabilities and the fuzzy logic qualitative approach. Some conclusions concerning the impacts of features on the detection of internal carotid artery stenosis and occlusion were obtained through analysis of the ANFIS. The performance of the ANFIS model was evaluated in terms of classification accuracies and the results confirmed that the proposed ANFIS classifiers have some potential in detecting the internal carotid artery stenosis and occlusion. The ANFIS model achieved accuracy rates which were higher than that of the stand-alone neural network model.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0010-4825
1879-0534
DOI:10.1016/j.compbiomed.2004.05.004