Cloud-Resolving Simulation of Low-Cloud Feedback to an Increase in Sea Surface Temperature

Abstract This study investigates the physical mechanisms of the low cloud feedback through cloud-resolving simulations of cloud-radiative equilibrium response to an increase in sea surface temperature (SST). Six pairs of perturbed and control simulations are performed to represent different regimes...

Full description

Saved in:
Bibliographic Details
Published inJournal of the atmospheric sciences Vol. 67; no. 3; pp. 730 - 748
Main Authors XU, Kuan-Man, ANNING CHENG, MINGHUA ZHANG
Format Journal Article
LanguageEnglish
Published Boston, MA American Meteorological Society 01.03.2010
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract This study investigates the physical mechanisms of the low cloud feedback through cloud-resolving simulations of cloud-radiative equilibrium response to an increase in sea surface temperature (SST). Six pairs of perturbed and control simulations are performed to represent different regimes of low clouds in the subtropical region by specifying SST differences (ΔSST) in the range of 4 and 14 K between the warm tropical and cool subtropical regions. The SST is uniformly increased by 2 K in the perturbed set of simulations. Equilibrium states are characterized by cumulus and stratocumulus cloud regimes with variable thicknesses and vertical extents for the range of specified ΔSSTs, with the perturbed set of simulations having higher cloud bases and tops and larger geometric thicknesses. The cloud feedback effect is negative for this ΔSST range (−0.68 to −5.22 W m−2 K−1) while the clear-sky feedback effect is mostly negative (−1.45 to 0.35 W m−2 K−1). The clear-sky feedback effect contributes greatly to the climate sensitivity parameter for the cumulus cloud regime whereas the cloud feedback effect dominates for the stratocumulus regime. The increase of liquid water path (LWP) and cloud optical depth is related to the increase of cloud thickness and liquid water content with SST. The rates of change in surface latent heat flux are much higher than those of saturation water vapor pressure in the cumulus simulations. The increase in surface latent heat flux is the primary mechanism for the large change of cloud physical properties with +2 K SST, which leads to the negative cloud feedback effects. The changes in cloud fraction also contribute to the negative cloud feedback effects in the cumulus regime. Comparison of these results with prior modeling studies is also discussed.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0022-4928
1520-0469
DOI:10.1175/2009jas3239.1