Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks

Presents a fully automated process for segmentation and classification of multispectral magnetic resonance (MR) images. This hybrid neural network method uses a Kohonen self-organizing neural network for segmentation and a multilayer backpropagation neural network for classification. To separate dif...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 16; no. 6; pp. 911 - 918
Main Authors Reddick, W.E., Glass, J.O., Cook, E.N., Elkin, T.D., Deaton, R.J.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.12.1997
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Presents a fully automated process for segmentation and classification of multispectral magnetic resonance (MR) images. This hybrid neural network method uses a Kohonen self-organizing neural network for segmentation and a multilayer backpropagation neural network for classification. To separate different tissue types, this process uses the standard T1-, T2-, and PD-weighted MR images acquired in clinical examinations. Volumetric measurements of brain structures, relative to intracranial volume, were calculated for an index transverse section in 14 normal subjects (median age 25 years; 7 male, 7 female). This index slice was at the level of the basal ganglia, included both genu and splenium of the corpus callosum, and generally, showed the putamen and lateral ventricle. An intraclass correlation of this automated segmentation and classification of tissues with the accepted standard of radiologist identification for the index slice in the 14 volunteers demonstrated coefficients (r/sub i/) of 0.91, 0.95, and 0.98 for white matter, gray matter, and ventricular cerebrospinal fluid (CSF), respectively. An analysis of variance for estimates of brain parenchyma volumes in 5 volunteers imaged 5 times each demonstrated high intrasubject reproducibility with a significance of at least p<0.05 for white matter, gray matter, and white/gray partial volumes. The population variation, across 14 volunteers, demonstrated little deviation from the averages for gray and white matter, while partial volume classes exhibited a slightly higher degree of variability. This fully automated technique produces reliable and reproducible MR image segmentation and classification while eliminating intra- and interobserver variability.
AbstractList Presents a fully automated process for segmentation and classification of multispectral magnetic resonance (MR) images. This hybrid neural network method uses a Kohonen self-organizing neural network for segmentation and a multilayer backpropagation neural network for classification. To separate different tissue types, this process uses the standard T1-, T2-, and PD-weighted MR images acquired in clinical examinations. Volumetric measurements of brain structures, relative to intracranial volume, were calculated for an index transverse section in 14 normal subjects (median age 25 years; 7 male, 7 female). This index slice was at the level of the basal ganglia, included both genu and splenium of the corpus callosum, and generally, showed the putamen and lateral ventricle. An intraclass correlation of this automated segmentation and classification of tissues with the accepted standard of radiologist identification for the index slice in the 14 volunteers demonstrated coefficients (r/sub i/) of 0.91, 0.95, and 0.98 for white matter, gray matter, and ventricular cerebrospinal fluid (CSF), respectively. An analysis of variance for estimates of brain parenchyma volumes in 5 volunteers imaged 5 times each demonstrated high intrasubject reproducibility with a significance of at least p<0.05 for white matter, gray matter, and white/gray partial volumes. The population variation, across 14 volunteers, demonstrated little deviation from the averages for gray and white matter, while partial volume classes exhibited a slightly higher degree of variability. This fully automated technique produces reliable and reproducible MR image segmentation and classification while eliminating intra- and interobserver variability.
Presents a fully automated process for segmentation and classification of multispectral magnetic resonance (MR) images. This hybrid neural network method uses a Kohonen self-organizing neural network for segmentation and a multilayer backpropagation neural network for classification. To separate different tissue types, this process uses the standard T1-, T2-, and PD-weighted MR images acquired in clinical examinations. Volumetric measurements of brain structures, relative to intracranial volume, were calculated for an index transverse section in 14 normal subjects (median age 25 years; 7 male, 7 female). This index slice was at the level of the basal ganglia, included both genu and splenium of the corpus callosum, and generally, showed the putamen and lateral ventricle. An intraclass correlation of this automated segmentation and classification of tissues with the accepted standard of radiologist identification for the index slice in the 14 volunteers demonstrated coefficients (r(i)) of 0.91, 0.95, and 0.98 for white matter, gray matter, and ventricular cerebrospinal fluid (CSF), respectively. An analysis of variance for estimates of brain parenchyma volumes in 5 volunteers imaged 5 times each demonstrated high intrasubject reproducibility with a significance of at least p < 0.05 for white matter, gray matter, and white/gray partial volumes. The population variation, across 14 volunteers, demonstrated little deviation from the averages for gray and white matter, while partial volume classes exhibited a slightly higher degree of variability. This fully automated technique produces reliable and reproducible MR image segmentation and classification while eliminating intra- and interobserver variability
A hybrid neural network method was used to fully automate the segmentation and classification of multispectral magnetic resonance (MR) images. The method combines the features of a Kohonen self-organizing neural network for segmentation and a multilayer backpropagation neural network for classification. This fully automated technique produces reliable and reproducible MR image segmentation and classification while eliminating intra- and interobserver variability.
We present a fully automated process for segmentation and classification of multispectral magnetic resonance (MR) images. This hybrid neural network method uses a Kohonen self-organizing neural network for segmentation and a multilayer backpropagation neural network for classification. To separate different tissue types, this process uses the standard T1-, T2-, and PD-weighted MR images acquired in clinical examinations. Volumetric measurements of brain structures, relative to intracranial volume, were calculated for an index transverse section in 14 normal subjects (median age 25 years; seven male, seven female). This index slice was at the level of the basal ganglia, included both genu and splenium of the corpus callosum, and generally, showed the putamen and lateral ventricle. An intraclass correlation of this automated segmentation and classification of tissues with the accepted standard of radiologist identification for the index slice in the 14 volunteers demonstrated coefficients (ri) of 0.91, 0.95, and 0.98 for white matter, gray matter, and ventricular cerebrospinal fluid (CSF), respectively. An analysis of variance for estimates of brain parenchyma volumes in five volunteers imaged five times each demonstrated high intrasubject reproducibility with a significance of at least p < 0.05 for white matter, gray matter, and white/gray partial volumes. The population variation, across 14 volunteers, demonstrated little deviation from the averages for gray and white matter, while partial volume classes exhibited a slightly higher degree of variability. This fully automated technique produces reliable and reproducible MR image segmentation and classification while eliminating intra- and interobserver variability.
Author Deaton, R.J.
Elkin, T.D.
Glass, J.O.
Reddick, W.E.
Cook, E.N.
Author_xml – sequence: 1
  givenname: W.E.
  surname: Reddick
  fullname: Reddick, W.E.
  email: gene.reddick@stjude.org
  organization: Dept. of Diagnostic Imaging, St. Jude Childrens Res. Hosp., Memphis, TN, USA
– sequence: 2
  givenname: J.O.
  surname: Glass
  fullname: Glass, J.O.
– sequence: 3
  givenname: E.N.
  surname: Cook
  fullname: Cook, E.N.
– sequence: 4
  givenname: T.D.
  surname: Elkin
  fullname: Elkin, T.D.
– sequence: 5
  givenname: R.J.
  surname: Deaton
  fullname: Deaton, R.J.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2175857$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/9533591$$D View this record in MEDLINE/PubMed
BookMark eNqFkcGL1TAQxoOsrG-fHrwKQg-y4KFrkiZpclwWV4UFLwreSppOHtE2eWZSFi_-7fbZ8q57GpjvN98k812Ri5giEPKa0RvGqPkg-I2SVOv2GdkxKXXNpfhxQXaUt7qmVPEX5ArxJ6VMSGouyaWRTSMN25G_t3NJky0wVAiHCWKxJaRY2ThUbrSIwQe3tpKvpnksAY_gSrZjNdlDhBJclQFTtNFBFZYe4Antsw2xmjHEQ2VzOdmEZSbCnP-X8pjyL3xJnns7Irza6p58v__47e5z_fD105e724faCcNKPUjphDbaqlb1vWmVarT3TosWmmaQdjAe9OCMo60bmPdagNbKULH83YDomz25Xn2POf2eAUs3BXQwjjZCmrFrjdSCU_MkyLVS1Gj2NMi40WJ56J68X0GXE2IG3x3zcqb8p2O0O6XXCd6t6S3s28107icYzuQW16K_23SLzo4-L0cPeMY4a6WWJ5s3KxYA4KxuO_4BaMuuAQ
CODEN ITMID4
CitedBy_id crossref_primary_10_1016_j_compeleceng_2017_01_018
crossref_primary_10_1016_j_mri_2006_09_012
crossref_primary_10_1080_10170660309509240
crossref_primary_10_1016_S0262_8856_00_00067_6
crossref_primary_10_1016_j_mri_2010_03_009
crossref_primary_10_1007_s00500_005_0040_8
crossref_primary_10_1007_s12650_012_0140_3
crossref_primary_10_1002_cem_721
crossref_primary_10_1142_S0219519415500761
crossref_primary_10_1002_jmri_20688
crossref_primary_10_1007_s12650_012_0153_y
crossref_primary_10_1016_j_pnsc_2009_03_012
crossref_primary_10_1093_noajnl_vdz012
crossref_primary_10_1016_S0730_725X_03_00185_1
crossref_primary_10_2174_2666255813999200915141534
crossref_primary_10_2316_Journal_202_2006_2_202_1526
crossref_primary_10_1002_vis_276
crossref_primary_10_4015_S1016237210001827
crossref_primary_10_1093_neuonc_nox062
crossref_primary_10_1002_pbc_24947
crossref_primary_10_4028_www_scientific_net_AMR_532_533_1329
crossref_primary_10_1007_s10489_022_04315_4
crossref_primary_10_17706_IJCCE_2020_9_1_1_17
crossref_primary_10_1007_s11571_022_09891_2
crossref_primary_10_1016_j_mri_2013_05_002
crossref_primary_10_1080_03772063_2019_1604176
crossref_primary_10_1016_S1474_6670_17_31936_5
crossref_primary_10_1007_s00500_019_04169_y
crossref_primary_10_1016_S0147_0272_03_00026_6
crossref_primary_10_1109_5326_885120
crossref_primary_10_1016_S0730_725X_98_00137_4
crossref_primary_10_1007_s10527_016_9599_x
crossref_primary_10_1016_j_mri_2006_04_015
crossref_primary_10_1109_TSMCB_2002_804363
crossref_primary_10_1016_j_asoc_2015_12_022
crossref_primary_10_1002_jmri_10237
crossref_primary_10_1016_j_eswa_2009_12_018
crossref_primary_10_1007_s10916_014_0093_2
crossref_primary_10_3390_s17112488
crossref_primary_10_1002_jmri_20229
crossref_primary_10_1016_S0730_725X_00_00182_X
crossref_primary_10_1109_TSM_2019_2963656
crossref_primary_10_1016_j_neuroimage_2008_12_021
crossref_primary_10_1109_TNNLS_2016_2614653
crossref_primary_10_1111_exsy_12225
crossref_primary_10_4304_jmm_6_3_244_251
crossref_primary_10_1016_j_media_2019_01_010
crossref_primary_10_3174_ajnr_A5159
crossref_primary_10_1007_s00234_013_1187_0
crossref_primary_10_1016_S0165_0270_03_00237_1
crossref_primary_10_1007_s13735_018_0162_2
crossref_primary_10_1016_j_neuroimage_2009_02_012
crossref_primary_10_1016_S0895_6111_01_00015_5
crossref_primary_10_1016_j_compbiomed_2007_01_010
crossref_primary_10_1016_j_mri_2006_09_043
crossref_primary_10_1155_2008_547684
crossref_primary_10_1155_2010_105610
crossref_primary_10_1016_j_neuroimage_2007_05_063
crossref_primary_10_1109_TMI_2002_806858
crossref_primary_10_1016_j_engappai_2013_10_004
crossref_primary_10_1016_j_mri_2011_09_008
crossref_primary_10_1016_j_acra_2009_12_017
crossref_primary_10_1109_ACCESS_2018_2853624
crossref_primary_10_1016_j_mri_2003_05_010
crossref_primary_10_1142_S012906571450004X
crossref_primary_10_1002_1531_8249_199912_46_6_834__AID_ANA5_3_0_CO_2_M
crossref_primary_10_1186_1472_6947_9_S1_S4
crossref_primary_10_2174_1573405614666181017122109
crossref_primary_10_1016_S0933_3657_03_00061_7
crossref_primary_10_1118_1_2374855
crossref_primary_10_1016_j_mri_2008_01_021
crossref_primary_10_1002_cncr_21679
crossref_primary_10_1007_s00256_007_0434_z
crossref_primary_10_1016_j_dsp_2008_08_002
crossref_primary_10_1080_1206212X_2006_11441795
crossref_primary_10_1016_j_mri_2009_01_024
crossref_primary_10_1016_S1052_3057_98_80019_0
crossref_primary_10_1117_1_1904066
crossref_primary_10_1016_j_neuroimage_2007_05_018
crossref_primary_10_1109_ACCESS_2016_2647238
crossref_primary_10_1007_s11042_020_08898_3
crossref_primary_10_1016_S0889_8588_05_70239_2
crossref_primary_10_1002_cncr_11355
crossref_primary_10_1007_s00234_007_0262_9
crossref_primary_10_1016_j_asoc_2011_01_021
crossref_primary_10_1080_03091900701455524
crossref_primary_10_1007_s10462_020_09946_y
crossref_primary_10_3174_ajnr_A3911
crossref_primary_10_1016_j_jneumeth_2009_05_026
crossref_primary_10_1016_j_neuroimage_2011_09_053
crossref_primary_10_1109_JBHI_2014_2360515
crossref_primary_10_1002_nbm_919
crossref_primary_10_1016_j_ejrnm_2016_08_020
crossref_primary_10_1088_1612_202X_abaf58
crossref_primary_10_1002_jmri_24559
crossref_primary_10_1017_S135561770410204X
crossref_primary_10_1155_2012_327861
crossref_primary_10_1016_S0031_3203_01_00178_9
crossref_primary_10_1016_S0730_725X_98_00014_9
crossref_primary_10_1080_17445760903546618
crossref_primary_10_1046_j_1365_2426_2003_01174_x
crossref_primary_10_1007_s11517_008_0372_5
crossref_primary_10_1007_s10851_017_0759_8
crossref_primary_10_1155_2020_4519483
crossref_primary_10_1007_s11227_022_04678_y
crossref_primary_10_1016_j_asoc_2016_03_010
crossref_primary_10_3174_ajnr_A1821
crossref_primary_10_1016_S0360_3016_00_01351_1
crossref_primary_10_1007_s12021_009_9046_1
crossref_primary_10_2174_1573405613666171123160609
crossref_primary_10_1109_TFUZZ_2020_2965896
crossref_primary_10_1016_j_compmedimag_2007_04_004
crossref_primary_10_1016_S0730_725X_02_00477_0
crossref_primary_10_1007_s10462_020_09854_1
crossref_primary_10_1002_nbm_1190
crossref_primary_10_1146_annurev_bioeng_2_1_315
crossref_primary_10_1002_ima_22140
crossref_primary_10_1038_srep30344
crossref_primary_10_1002_mrm_10124
crossref_primary_10_1016_j_wear_2005_02_085
crossref_primary_10_1007_s00500_022_07269_4
crossref_primary_10_2139_ssrn_4607754
crossref_primary_10_1002_cncr_25343
crossref_primary_10_1016_S0031_3203_03_00118_3
crossref_primary_10_1016_j_compmedimag_2009_11_001
crossref_primary_10_1016_j_engappai_2010_09_008
crossref_primary_10_4028_www_scientific_net_AMR_490_495_157
crossref_primary_10_1002_mrm_20710
crossref_primary_10_1016_S0730_725X_00_00218_6
crossref_primary_10_1002_pbc_21745
crossref_primary_10_1016_j_procs_2015_04_227
crossref_primary_10_1148_radiology_214_1_r00dc35199
crossref_primary_10_4329_wjr_v6_i11_855
crossref_primary_10_1200_JCO_2001_19_2_472
Cites_doi 10.1118/1.597231
10.1109/42.141646
10.1109/42.251125
10.1118/1.597000
10.1109/51.334636
10.1007/978-3-642-52247-5_79
10.1007/978-3-642-88163-3
10.1002/mrm.1910230108
10.1109/42.232267
10.1109/42.387715
10.1002/mrm.1910290507
10.1207/s15374424jccp2202_10
10.1002/jmri.1880020603
10.1097/00004728-199103000-00035
10.1109/42.241881
10.1109/42.414608
10.1109/42.310875
10.1109/42.511759
10.1148/radiology.154.1.3964938
10.1109/42.370400
10.1007/BF02368629
10.1109/42.251128
10.1109/42.141645
10.1016/0262-8856(94)90058-2
10.1002/jmri.1880050520
10.1109/72.238310
10.1148/radiology.178.1.1984289
10.1002/jmri.1880050502
10.1016/0730-725X(94)00124-L
10.1176/ajp.152.7.987
10.1016/0262-8856(92)90021-T
10.1097/00004728-199303000-00007
10.1109/42.310878
10.1109/42.511747
10.1016/0730-725X(94)90085-6
ContentType Journal Article
Copyright 1998 INIST-CNRS
Copyright_xml – notice: 1998 INIST-CNRS
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SC
7U5
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/42.650887
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
Technology Research Database

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 918
ExternalDocumentID 327395
10_1109_42_650887
9533591
2175857
650887
Genre orig-research
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: P30CA21765
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AASAJ
AAYOK
ABQJQ
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIG
RNS
RXW
TAE
TN5
VH1
08R
ABPTK
IQODW
TAF
XFK
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SC
7U5
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c491t-d55c4898a676bb976638ffc847e33d5ad9fe8dc9c07cd1ff84e8869040069e4b3
IEDL.DBID RIE
ISSN 0278-0062
IngestDate Sat Aug 17 00:16:35 EDT 2024
Sat Aug 17 03:34:47 EDT 2024
Fri Aug 16 21:13:04 EDT 2024
Fri Aug 23 03:15:20 EDT 2024
Sat Sep 28 07:42:03 EDT 2024
Sun Oct 29 17:06:18 EDT 2023
Mon Nov 04 11:49:19 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 6
Keywords Human
Biomedical data processing
Image analysis
Multispectral detection
Reproducibility
Classification
Central nervous system
Medical imagery
Neural network
Nuclear magnetic resonance imaging
Artificial intelligence
Brain (vertebrata)
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c491t-d55c4898a676bb976638ffc847e33d5ad9fe8dc9c07cd1ff84e8869040069e4b3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://europepmc.org/articles/pmc2661767?pdf=render
PMID 9533591
PQID 21298466
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_79584209
pascalfrancis_primary_2175857
proquest_miscellaneous_28660981
crossref_primary_10_1109_42_650887
pubmed_primary_9533591
ieee_primary_650887
proquest_miscellaneous_21298466
PublicationCentury 1900
PublicationDate 1997-12-01
PublicationDateYYYYMMDD 1997-12-01
PublicationDate_xml – month: 12
  year: 1997
  text: 1997-12-01
  day: 01
PublicationDecade 1990
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 1997
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref13
ref34
ref37
ref15
ref14
ref31
ref30
ref33
ref11
ref32
ref10
guilford (ref42) 1965
ref1
ref39
ref17
ref16
ref19
ref18
evans (ref38) 1994
aylward (ref6) 1995; 152
ref24
ref23
ref26
ref25
ref20
ref41
ying (ref12) 1994
ref22
narayana (ref2) 1993; 3 supp
kohonen (ref35) 1989
ref28
ref27
blatter (ref21) 1995; 16
ref29
ref8
ref7
ref9
ref4
ref3
ref5
freeman (ref36) 1991
ref40
References_xml – ident: ref32
  doi: 10.1118/1.597231
– ident: ref13
  doi: 10.1109/42.141646
– start-page: 803
  year: 1994
  ident: ref12
  article-title: adaptive filtering processing for magnetic resonance images
  publication-title: Proc Soc Magnetic Resonance
  contributor:
    fullname: ying
– ident: ref26
  doi: 10.1109/42.251125
– start-page: 145
  year: 1994
  ident: ref38
  article-title: three-dimensional correlative imaging: applications in human brain mapping
  publication-title: Functional Neuroimaging Technical Foundations
  contributor:
    fullname: evans
– ident: ref17
  doi: 10.1118/1.597000
– ident: ref25
  doi: 10.1109/51.334636
– ident: ref8
  doi: 10.1007/978-3-642-52247-5_79
– year: 1989
  ident: ref35
  publication-title: Self-Organization and Associative Memory
  doi: 10.1007/978-3-642-88163-3
  contributor:
    fullname: kohonen
– ident: ref3
  doi: 10.1002/mrm.1910230108
– volume: 3 supp
  start-page: 111
  year: 1993
  ident: ref2
  article-title: inter- and intraoperator variability in the quantitative volumetric measurements of multiple sclerosis lesions
  publication-title: J Magn Reson Imag
  contributor:
    fullname: narayana
– ident: ref14
  doi: 10.1109/42.232267
– ident: ref27
  doi: 10.1109/42.387715
– ident: ref22
  doi: 10.1002/mrm.1910290507
– ident: ref5
  doi: 10.1207/s15374424jccp2202_10
– ident: ref41
  doi: 10.1002/jmri.1880020603
– ident: ref18
  doi: 10.1097/00004728-199103000-00035
– ident: ref30
  doi: 10.1109/42.241881
– ident: ref23
  doi: 10.1109/42.414608
– ident: ref28
  doi: 10.1109/42.310875
– ident: ref34
  doi: 10.1109/42.511759
– year: 1991
  ident: ref36
  publication-title: Neural Networks Algorithms Applications and Programming Techniques
  contributor:
    fullname: freeman
– ident: ref7
  doi: 10.1148/radiology.154.1.3964938
– ident: ref9
  doi: 10.1109/42.370400
– ident: ref1
  doi: 10.1007/BF02368629
– ident: ref11
  doi: 10.1109/42.251128
– ident: ref31
  doi: 10.1109/42.141645
– ident: ref37
  doi: 10.1016/0262-8856(94)90058-2
– ident: ref4
  doi: 10.1002/jmri.1880050520
– ident: ref33
  doi: 10.1109/72.238310
– ident: ref19
  doi: 10.1148/radiology.178.1.1984289
– volume: 16
  start-page: 241
  year: 1995
  ident: ref21
  article-title: quantitative volumetric analysis of brain mr: normative database spanning five decades of life
  publication-title: Amer J Neuroradiol
  contributor:
    fullname: blatter
– ident: ref20
  doi: 10.1002/jmri.1880050502
– ident: ref16
  doi: 10.1016/0730-725X(94)00124-L
– year: 1965
  ident: ref42
  publication-title: Fundamental Statistics in Psychology and Education
  contributor:
    fullname: guilford
– ident: ref10
  doi: 10.1109/42.370400
– volume: 152
  start-page: 987
  year: 1995
  ident: ref6
  article-title: magnetic resonance imaging measurements of gray matter volume reductions in hiv dementia
  publication-title: Amer J Psych
  doi: 10.1176/ajp.152.7.987
  contributor:
    fullname: aylward
– ident: ref40
  doi: 10.1016/0262-8856(92)90021-T
– ident: ref39
  doi: 10.1097/00004728-199303000-00007
– ident: ref24
  doi: 10.1109/42.310878
– ident: ref29
  doi: 10.1109/42.511747
– ident: ref15
  doi: 10.1016/0730-725X(94)90085-6
SSID ssj0014509
Score 2.1046233
Snippet Presents a fully automated process for segmentation and classification of multispectral magnetic resonance (MR) images. This hybrid neural network method uses...
We present a fully automated process for segmentation and classification of multispectral magnetic resonance (MR) images. This hybrid neural network method...
A hybrid neural network method was used to fully automate the segmentation and classification of multispectral magnetic resonance (MR) images. The method...
SourceID proquest
crossref
pubmed
pascalfrancis
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 911
SubjectTerms Adult
Artificial neural networks
Backpropagation
Biological and medical sciences
Biological neural networks
Brain
Brain - anatomy & histology
Female
Humans
Image Processing, Computer-Assisted - methods
Image segmentation
Investigative techniques, diagnostic techniques (general aspects)
Magnetic multilayers
Magnetic resonance
Magnetic Resonance Imaging
Male
Medical imaging
Medical sciences
Multi-layer neural network
Nervous system
Neural networks
Neural Networks (Computer)
Neurophysiology
Radiodiagnosis. Nmr imagery. Nmr spectrometry
Reproducibility of Results
Volume measurement
Title Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks
URI https://ieeexplore.ieee.org/document/650887
https://www.ncbi.nlm.nih.gov/pubmed/9533591
https://search.proquest.com/docview/21298466
https://search.proquest.com/docview/28660981
https://search.proquest.com/docview/79584209
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Na9VAEF9sQakHP54Wq1YX8ZrXTbLZZI5FLEXQk4Xewn5MHiJNSpNcPPi3O7Ob97BixVPCZkKyX9nfZn7zGyHeOxvow1_YDLyuM00In-ZcKDN2QuUBglE2qn1-MecX-tNldbnobMdYGESM5DNc82n05YfBz_yr7CShiT2xVwOkUK2dw0BXic1RsGCsMsUiIpQrONHFOt14IO4zmbKC_NYiFLOqMCfSjtQsXcpncTfgjAvP2eMU0T1GvULmm3xfz5Nb-x9_qDn-Z52eiEcLAJWnacQ8FfewX4mHv8kSrsSDz4vD_Zn4eTpPA4FaDHLEzdUSqNRL2wfpGXgz0ygVDZ2M7MQYu3lDj7iym55DJCXt6AfW9UD5jcpwZFPHqSkks-43kkdvErKQLK8ZD5GcPj4XF2cfv344z5aUDZnXkE9ZqCqvG2isqY1zBHVoenedpyUQyzJUNkCHTfDgVe1D3nWNxoZzYmlWTEbtykOx3w89vhCytnlQrvBVE4z2qnM15IA1u98cqBKOxLttH7bXSZmjjTsaBa0u2tSuR2LFTb4z2JYe3-rs3WXan9H2ia6_3XZ-S7ONXSi2x2EeyaAAQmzmHxaNMQqa_G6LGgj0FYoqcJjG1e7xy-h8-deXfiUOonRupNK8FvvTzYzHBIgm9yZOhV_MOgo7
link.rule.ids 315,783,787,799,27936,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELVaKgocWrqAgJZiVb1mcRLHsY-oKtq2wAkkbpG_sqoqEkSSCwd-OzN2dgWoVD0lciZK_BU_Z968IeSr0Q4-_JlOlOVlwgHhw5xzeYJOqNQpJ5gOap_nYnbJf14VV6POdoiF8d4H8pmf4mnw5bvWDvir7CiiidfkDcBqKWKw1tJlwIvI58hQMpaJbJQRSpk64tk03rpOVpFOWaj0yTIU8qogK1J30DB1zGjxMuQMS8_J-xjT3QXFQmSc_JkOvZnau2d6jv9Zq03yboSg9DiOmQ_klW8mZOORMOGEvD0bXe5b5P546FuAtd7Rzs-vx1ClhurGUYvQG7lGsaitaeAnhujNW3jEtZ43GCRJYU_forKHp7-hzHdoajA5BUXe_Zzi-I1SFhQFNsMh0NO7bXJ58v3i2ywZkzYklqu0T1xRWC6V1KIUxgDYgQle1xYWQZ_nrtBO1V46qywrrUvrWnIvMSsWR81kz02-Q1aatvG7hJY6dcxktpBOcMtqU6pU-RIdcEaxXO2RL4s-rG6iNkcV9jRMVTyrYrvukQk2-dJgUXrwpLOXl2GHBhsouH646PwK5hs6UXTj26EDg0wBZhP_sJBCMCXTly1KBbAvY1CBnTiulo8fR-f-X1_6kKzNLs5Oq9Mf578-kvUgpBuINZ_ISn87-AOAR735HKbFA82EDYY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+segmentation+and+classification+of+multispectral+magnetic+resonance+images+of+brain+using+artificial+neural+networks&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Reddick%2C+W.E.&rft.au=Glass%2C+J.O.&rft.au=Cook%2C+E.N.&rft.au=Elkin%2C+T.D.&rft.date=1997-12-01&rft.pub=IEEE&rft.issn=0278-0062&rft.volume=16&rft.issue=6&rft.spage=911&rft.epage=918&rft_id=info:doi/10.1109%2F42.650887&rft_id=info%3Apmid%2F9533591&rft.externalDocID=650887
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon