Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks
Presents a fully automated process for segmentation and classification of multispectral magnetic resonance (MR) images. This hybrid neural network method uses a Kohonen self-organizing neural network for segmentation and a multilayer backpropagation neural network for classification. To separate dif...
Saved in:
Published in | IEEE transactions on medical imaging Vol. 16; no. 6; pp. 911 - 918 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.12.1997
Institute of Electrical and Electronics Engineers |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Presents a fully automated process for segmentation and classification of multispectral magnetic resonance (MR) images. This hybrid neural network method uses a Kohonen self-organizing neural network for segmentation and a multilayer backpropagation neural network for classification. To separate different tissue types, this process uses the standard T1-, T2-, and PD-weighted MR images acquired in clinical examinations. Volumetric measurements of brain structures, relative to intracranial volume, were calculated for an index transverse section in 14 normal subjects (median age 25 years; 7 male, 7 female). This index slice was at the level of the basal ganglia, included both genu and splenium of the corpus callosum, and generally, showed the putamen and lateral ventricle. An intraclass correlation of this automated segmentation and classification of tissues with the accepted standard of radiologist identification for the index slice in the 14 volunteers demonstrated coefficients (r/sub i/) of 0.91, 0.95, and 0.98 for white matter, gray matter, and ventricular cerebrospinal fluid (CSF), respectively. An analysis of variance for estimates of brain parenchyma volumes in 5 volunteers imaged 5 times each demonstrated high intrasubject reproducibility with a significance of at least p<0.05 for white matter, gray matter, and white/gray partial volumes. The population variation, across 14 volunteers, demonstrated little deviation from the averages for gray and white matter, while partial volume classes exhibited a slightly higher degree of variability. This fully automated technique produces reliable and reproducible MR image segmentation and classification while eliminating intra- and interobserver variability. |
---|---|
AbstractList | Presents a fully automated process for segmentation and classification of multispectral magnetic resonance (MR) images. This hybrid neural network method uses a Kohonen self-organizing neural network for segmentation and a multilayer backpropagation neural network for classification. To separate different tissue types, this process uses the standard T1-, T2-, and PD-weighted MR images acquired in clinical examinations. Volumetric measurements of brain structures, relative to intracranial volume, were calculated for an index transverse section in 14 normal subjects (median age 25 years; 7 male, 7 female). This index slice was at the level of the basal ganglia, included both genu and splenium of the corpus callosum, and generally, showed the putamen and lateral ventricle. An intraclass correlation of this automated segmentation and classification of tissues with the accepted standard of radiologist identification for the index slice in the 14 volunteers demonstrated coefficients (r/sub i/) of 0.91, 0.95, and 0.98 for white matter, gray matter, and ventricular cerebrospinal fluid (CSF), respectively. An analysis of variance for estimates of brain parenchyma volumes in 5 volunteers imaged 5 times each demonstrated high intrasubject reproducibility with a significance of at least p<0.05 for white matter, gray matter, and white/gray partial volumes. The population variation, across 14 volunteers, demonstrated little deviation from the averages for gray and white matter, while partial volume classes exhibited a slightly higher degree of variability. This fully automated technique produces reliable and reproducible MR image segmentation and classification while eliminating intra- and interobserver variability. Presents a fully automated process for segmentation and classification of multispectral magnetic resonance (MR) images. This hybrid neural network method uses a Kohonen self-organizing neural network for segmentation and a multilayer backpropagation neural network for classification. To separate different tissue types, this process uses the standard T1-, T2-, and PD-weighted MR images acquired in clinical examinations. Volumetric measurements of brain structures, relative to intracranial volume, were calculated for an index transverse section in 14 normal subjects (median age 25 years; 7 male, 7 female). This index slice was at the level of the basal ganglia, included both genu and splenium of the corpus callosum, and generally, showed the putamen and lateral ventricle. An intraclass correlation of this automated segmentation and classification of tissues with the accepted standard of radiologist identification for the index slice in the 14 volunteers demonstrated coefficients (r(i)) of 0.91, 0.95, and 0.98 for white matter, gray matter, and ventricular cerebrospinal fluid (CSF), respectively. An analysis of variance for estimates of brain parenchyma volumes in 5 volunteers imaged 5 times each demonstrated high intrasubject reproducibility with a significance of at least p < 0.05 for white matter, gray matter, and white/gray partial volumes. The population variation, across 14 volunteers, demonstrated little deviation from the averages for gray and white matter, while partial volume classes exhibited a slightly higher degree of variability. This fully automated technique produces reliable and reproducible MR image segmentation and classification while eliminating intra- and interobserver variability A hybrid neural network method was used to fully automate the segmentation and classification of multispectral magnetic resonance (MR) images. The method combines the features of a Kohonen self-organizing neural network for segmentation and a multilayer backpropagation neural network for classification. This fully automated technique produces reliable and reproducible MR image segmentation and classification while eliminating intra- and interobserver variability. We present a fully automated process for segmentation and classification of multispectral magnetic resonance (MR) images. This hybrid neural network method uses a Kohonen self-organizing neural network for segmentation and a multilayer backpropagation neural network for classification. To separate different tissue types, this process uses the standard T1-, T2-, and PD-weighted MR images acquired in clinical examinations. Volumetric measurements of brain structures, relative to intracranial volume, were calculated for an index transverse section in 14 normal subjects (median age 25 years; seven male, seven female). This index slice was at the level of the basal ganglia, included both genu and splenium of the corpus callosum, and generally, showed the putamen and lateral ventricle. An intraclass correlation of this automated segmentation and classification of tissues with the accepted standard of radiologist identification for the index slice in the 14 volunteers demonstrated coefficients (ri) of 0.91, 0.95, and 0.98 for white matter, gray matter, and ventricular cerebrospinal fluid (CSF), respectively. An analysis of variance for estimates of brain parenchyma volumes in five volunteers imaged five times each demonstrated high intrasubject reproducibility with a significance of at least p < 0.05 for white matter, gray matter, and white/gray partial volumes. The population variation, across 14 volunteers, demonstrated little deviation from the averages for gray and white matter, while partial volume classes exhibited a slightly higher degree of variability. This fully automated technique produces reliable and reproducible MR image segmentation and classification while eliminating intra- and interobserver variability. |
Author | Deaton, R.J. Elkin, T.D. Glass, J.O. Reddick, W.E. Cook, E.N. |
Author_xml | – sequence: 1 givenname: W.E. surname: Reddick fullname: Reddick, W.E. email: gene.reddick@stjude.org organization: Dept. of Diagnostic Imaging, St. Jude Childrens Res. Hosp., Memphis, TN, USA – sequence: 2 givenname: J.O. surname: Glass fullname: Glass, J.O. – sequence: 3 givenname: E.N. surname: Cook fullname: Cook, E.N. – sequence: 4 givenname: T.D. surname: Elkin fullname: Elkin, T.D. – sequence: 5 givenname: R.J. surname: Deaton fullname: Deaton, R.J. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2175857$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/9533591$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcGL1TAQxoOsrG-fHrwKQg-y4KFrkiZpclwWV4UFLwreSppOHtE2eWZSFi_-7fbZ8q57GpjvN98k812Ri5giEPKa0RvGqPkg-I2SVOv2GdkxKXXNpfhxQXaUt7qmVPEX5ArxJ6VMSGouyaWRTSMN25G_t3NJky0wVAiHCWKxJaRY2ThUbrSIwQe3tpKvpnksAY_gSrZjNdlDhBJclQFTtNFBFZYe4Antsw2xmjHEQ2VzOdmEZSbCnP-X8pjyL3xJnns7Irza6p58v__47e5z_fD105e724faCcNKPUjphDbaqlb1vWmVarT3TosWmmaQdjAe9OCMo60bmPdagNbKULH83YDomz25Xn2POf2eAUs3BXQwjjZCmrFrjdSCU_MkyLVS1Gj2NMi40WJ56J68X0GXE2IG3x3zcqb8p2O0O6XXCd6t6S3s28107icYzuQW16K_23SLzo4-L0cPeMY4a6WWJ5s3KxYA4KxuO_4BaMuuAQ |
CODEN | ITMID4 |
CitedBy_id | crossref_primary_10_1016_j_compeleceng_2017_01_018 crossref_primary_10_1016_j_mri_2006_09_012 crossref_primary_10_1080_10170660309509240 crossref_primary_10_1016_S0262_8856_00_00067_6 crossref_primary_10_1016_j_mri_2010_03_009 crossref_primary_10_1007_s00500_005_0040_8 crossref_primary_10_1007_s12650_012_0140_3 crossref_primary_10_1002_cem_721 crossref_primary_10_1142_S0219519415500761 crossref_primary_10_1002_jmri_20688 crossref_primary_10_1007_s12650_012_0153_y crossref_primary_10_1016_j_pnsc_2009_03_012 crossref_primary_10_1093_noajnl_vdz012 crossref_primary_10_1016_S0730_725X_03_00185_1 crossref_primary_10_2174_2666255813999200915141534 crossref_primary_10_2316_Journal_202_2006_2_202_1526 crossref_primary_10_1002_vis_276 crossref_primary_10_4015_S1016237210001827 crossref_primary_10_1093_neuonc_nox062 crossref_primary_10_1002_pbc_24947 crossref_primary_10_4028_www_scientific_net_AMR_532_533_1329 crossref_primary_10_1007_s10489_022_04315_4 crossref_primary_10_17706_IJCCE_2020_9_1_1_17 crossref_primary_10_1007_s11571_022_09891_2 crossref_primary_10_1016_j_mri_2013_05_002 crossref_primary_10_1080_03772063_2019_1604176 crossref_primary_10_1016_S1474_6670_17_31936_5 crossref_primary_10_1007_s00500_019_04169_y crossref_primary_10_1016_S0147_0272_03_00026_6 crossref_primary_10_1109_5326_885120 crossref_primary_10_1016_S0730_725X_98_00137_4 crossref_primary_10_1007_s10527_016_9599_x crossref_primary_10_1016_j_mri_2006_04_015 crossref_primary_10_1109_TSMCB_2002_804363 crossref_primary_10_1016_j_asoc_2015_12_022 crossref_primary_10_1002_jmri_10237 crossref_primary_10_1016_j_eswa_2009_12_018 crossref_primary_10_1007_s10916_014_0093_2 crossref_primary_10_3390_s17112488 crossref_primary_10_1002_jmri_20229 crossref_primary_10_1016_S0730_725X_00_00182_X crossref_primary_10_1109_TSM_2019_2963656 crossref_primary_10_1016_j_neuroimage_2008_12_021 crossref_primary_10_1109_TNNLS_2016_2614653 crossref_primary_10_1111_exsy_12225 crossref_primary_10_4304_jmm_6_3_244_251 crossref_primary_10_1016_j_media_2019_01_010 crossref_primary_10_3174_ajnr_A5159 crossref_primary_10_1007_s00234_013_1187_0 crossref_primary_10_1016_S0165_0270_03_00237_1 crossref_primary_10_1007_s13735_018_0162_2 crossref_primary_10_1016_j_neuroimage_2009_02_012 crossref_primary_10_1016_S0895_6111_01_00015_5 crossref_primary_10_1016_j_compbiomed_2007_01_010 crossref_primary_10_1016_j_mri_2006_09_043 crossref_primary_10_1155_2008_547684 crossref_primary_10_1155_2010_105610 crossref_primary_10_1016_j_neuroimage_2007_05_063 crossref_primary_10_1109_TMI_2002_806858 crossref_primary_10_1016_j_engappai_2013_10_004 crossref_primary_10_1016_j_mri_2011_09_008 crossref_primary_10_1016_j_acra_2009_12_017 crossref_primary_10_1109_ACCESS_2018_2853624 crossref_primary_10_1016_j_mri_2003_05_010 crossref_primary_10_1142_S012906571450004X crossref_primary_10_1002_1531_8249_199912_46_6_834__AID_ANA5_3_0_CO_2_M crossref_primary_10_1186_1472_6947_9_S1_S4 crossref_primary_10_2174_1573405614666181017122109 crossref_primary_10_1016_S0933_3657_03_00061_7 crossref_primary_10_1118_1_2374855 crossref_primary_10_1016_j_mri_2008_01_021 crossref_primary_10_1002_cncr_21679 crossref_primary_10_1007_s00256_007_0434_z crossref_primary_10_1016_j_dsp_2008_08_002 crossref_primary_10_1080_1206212X_2006_11441795 crossref_primary_10_1016_j_mri_2009_01_024 crossref_primary_10_1016_S1052_3057_98_80019_0 crossref_primary_10_1117_1_1904066 crossref_primary_10_1016_j_neuroimage_2007_05_018 crossref_primary_10_1109_ACCESS_2016_2647238 crossref_primary_10_1007_s11042_020_08898_3 crossref_primary_10_1016_S0889_8588_05_70239_2 crossref_primary_10_1002_cncr_11355 crossref_primary_10_1007_s00234_007_0262_9 crossref_primary_10_1016_j_asoc_2011_01_021 crossref_primary_10_1080_03091900701455524 crossref_primary_10_1007_s10462_020_09946_y crossref_primary_10_3174_ajnr_A3911 crossref_primary_10_1016_j_jneumeth_2009_05_026 crossref_primary_10_1016_j_neuroimage_2011_09_053 crossref_primary_10_1109_JBHI_2014_2360515 crossref_primary_10_1002_nbm_919 crossref_primary_10_1016_j_ejrnm_2016_08_020 crossref_primary_10_1088_1612_202X_abaf58 crossref_primary_10_1002_jmri_24559 crossref_primary_10_1017_S135561770410204X crossref_primary_10_1155_2012_327861 crossref_primary_10_1016_S0031_3203_01_00178_9 crossref_primary_10_1016_S0730_725X_98_00014_9 crossref_primary_10_1080_17445760903546618 crossref_primary_10_1046_j_1365_2426_2003_01174_x crossref_primary_10_1007_s11517_008_0372_5 crossref_primary_10_1007_s10851_017_0759_8 crossref_primary_10_1155_2020_4519483 crossref_primary_10_1007_s11227_022_04678_y crossref_primary_10_1016_j_asoc_2016_03_010 crossref_primary_10_3174_ajnr_A1821 crossref_primary_10_1016_S0360_3016_00_01351_1 crossref_primary_10_1007_s12021_009_9046_1 crossref_primary_10_2174_1573405613666171123160609 crossref_primary_10_1109_TFUZZ_2020_2965896 crossref_primary_10_1016_j_compmedimag_2007_04_004 crossref_primary_10_1016_S0730_725X_02_00477_0 crossref_primary_10_1007_s10462_020_09854_1 crossref_primary_10_1002_nbm_1190 crossref_primary_10_1146_annurev_bioeng_2_1_315 crossref_primary_10_1002_ima_22140 crossref_primary_10_1038_srep30344 crossref_primary_10_1002_mrm_10124 crossref_primary_10_1016_j_wear_2005_02_085 crossref_primary_10_1007_s00500_022_07269_4 crossref_primary_10_2139_ssrn_4607754 crossref_primary_10_1002_cncr_25343 crossref_primary_10_1016_S0031_3203_03_00118_3 crossref_primary_10_1016_j_compmedimag_2009_11_001 crossref_primary_10_1016_j_engappai_2010_09_008 crossref_primary_10_4028_www_scientific_net_AMR_490_495_157 crossref_primary_10_1002_mrm_20710 crossref_primary_10_1016_S0730_725X_00_00218_6 crossref_primary_10_1002_pbc_21745 crossref_primary_10_1016_j_procs_2015_04_227 crossref_primary_10_1148_radiology_214_1_r00dc35199 crossref_primary_10_4329_wjr_v6_i11_855 crossref_primary_10_1200_JCO_2001_19_2_472 |
Cites_doi | 10.1118/1.597231 10.1109/42.141646 10.1109/42.251125 10.1118/1.597000 10.1109/51.334636 10.1007/978-3-642-52247-5_79 10.1007/978-3-642-88163-3 10.1002/mrm.1910230108 10.1109/42.232267 10.1109/42.387715 10.1002/mrm.1910290507 10.1207/s15374424jccp2202_10 10.1002/jmri.1880020603 10.1097/00004728-199103000-00035 10.1109/42.241881 10.1109/42.414608 10.1109/42.310875 10.1109/42.511759 10.1148/radiology.154.1.3964938 10.1109/42.370400 10.1007/BF02368629 10.1109/42.251128 10.1109/42.141645 10.1016/0262-8856(94)90058-2 10.1002/jmri.1880050520 10.1109/72.238310 10.1148/radiology.178.1.1984289 10.1002/jmri.1880050502 10.1016/0730-725X(94)00124-L 10.1176/ajp.152.7.987 10.1016/0262-8856(92)90021-T 10.1097/00004728-199303000-00007 10.1109/42.310878 10.1109/42.511747 10.1016/0730-725X(94)90085-6 |
ContentType | Journal Article |
Copyright | 1998 INIST-CNRS |
Copyright_xml | – notice: 1998 INIST-CNRS |
DBID | IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7SC 7U5 8FD JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/42.650887 |
DatabaseName | Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Technology Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-254X |
EndPage | 918 |
ExternalDocumentID | 327395 10_1109_42_650887 9533591 2175857 650887 |
Genre | orig-research Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: P30CA21765 |
GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AASAJ AAYOK ABQJQ ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AI. AIBXA AKJIK ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RIG RNS RXW TAE TN5 VH1 08R ABPTK IQODW TAF XFK CGR CUY CVF ECM EIF NPM AAYXX CITATION 7SC 7U5 8FD JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c491t-d55c4898a676bb976638ffc847e33d5ad9fe8dc9c07cd1ff84e8869040069e4b3 |
IEDL.DBID | RIE |
ISSN | 0278-0062 |
IngestDate | Sat Aug 17 00:16:35 EDT 2024 Sat Aug 17 03:34:47 EDT 2024 Fri Aug 16 21:13:04 EDT 2024 Fri Aug 23 03:15:20 EDT 2024 Sat Sep 28 07:42:03 EDT 2024 Sun Oct 29 17:06:18 EDT 2023 Mon Nov 04 11:49:19 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 6 |
Keywords | Human Biomedical data processing Image analysis Multispectral detection Reproducibility Classification Central nervous system Medical imagery Neural network Nuclear magnetic resonance imaging Artificial intelligence Brain (vertebrata) |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c491t-d55c4898a676bb976638ffc847e33d5ad9fe8dc9c07cd1ff84e8869040069e4b3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://europepmc.org/articles/pmc2661767?pdf=render |
PMID | 9533591 |
PQID | 21298466 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_79584209 pascalfrancis_primary_2175857 proquest_miscellaneous_28660981 crossref_primary_10_1109_42_650887 pubmed_primary_9533591 ieee_primary_650887 proquest_miscellaneous_21298466 |
PublicationCentury | 1900 |
PublicationDate | 1997-12-01 |
PublicationDateYYYYMMDD | 1997-12-01 |
PublicationDate_xml | – month: 12 year: 1997 text: 1997-12-01 day: 01 |
PublicationDecade | 1990 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: United States |
PublicationTitle | IEEE transactions on medical imaging |
PublicationTitleAbbrev | TMI |
PublicationTitleAlternate | IEEE Trans Med Imaging |
PublicationYear | 1997 |
Publisher | IEEE Institute of Electrical and Electronics Engineers |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers |
References | ref13 ref34 ref37 ref15 ref14 ref31 ref30 ref33 ref11 ref32 ref10 guilford (ref42) 1965 ref1 ref39 ref17 ref16 ref19 ref18 evans (ref38) 1994 aylward (ref6) 1995; 152 ref24 ref23 ref26 ref25 ref20 ref41 ying (ref12) 1994 ref22 narayana (ref2) 1993; 3 supp kohonen (ref35) 1989 ref28 ref27 blatter (ref21) 1995; 16 ref29 ref8 ref7 ref9 ref4 ref3 ref5 freeman (ref36) 1991 ref40 |
References_xml | – ident: ref32 doi: 10.1118/1.597231 – ident: ref13 doi: 10.1109/42.141646 – start-page: 803 year: 1994 ident: ref12 article-title: adaptive filtering processing for magnetic resonance images publication-title: Proc Soc Magnetic Resonance contributor: fullname: ying – ident: ref26 doi: 10.1109/42.251125 – start-page: 145 year: 1994 ident: ref38 article-title: three-dimensional correlative imaging: applications in human brain mapping publication-title: Functional Neuroimaging Technical Foundations contributor: fullname: evans – ident: ref17 doi: 10.1118/1.597000 – ident: ref25 doi: 10.1109/51.334636 – ident: ref8 doi: 10.1007/978-3-642-52247-5_79 – year: 1989 ident: ref35 publication-title: Self-Organization and Associative Memory doi: 10.1007/978-3-642-88163-3 contributor: fullname: kohonen – ident: ref3 doi: 10.1002/mrm.1910230108 – volume: 3 supp start-page: 111 year: 1993 ident: ref2 article-title: inter- and intraoperator variability in the quantitative volumetric measurements of multiple sclerosis lesions publication-title: J Magn Reson Imag contributor: fullname: narayana – ident: ref14 doi: 10.1109/42.232267 – ident: ref27 doi: 10.1109/42.387715 – ident: ref22 doi: 10.1002/mrm.1910290507 – ident: ref5 doi: 10.1207/s15374424jccp2202_10 – ident: ref41 doi: 10.1002/jmri.1880020603 – ident: ref18 doi: 10.1097/00004728-199103000-00035 – ident: ref30 doi: 10.1109/42.241881 – ident: ref23 doi: 10.1109/42.414608 – ident: ref28 doi: 10.1109/42.310875 – ident: ref34 doi: 10.1109/42.511759 – year: 1991 ident: ref36 publication-title: Neural Networks Algorithms Applications and Programming Techniques contributor: fullname: freeman – ident: ref7 doi: 10.1148/radiology.154.1.3964938 – ident: ref9 doi: 10.1109/42.370400 – ident: ref1 doi: 10.1007/BF02368629 – ident: ref11 doi: 10.1109/42.251128 – ident: ref31 doi: 10.1109/42.141645 – ident: ref37 doi: 10.1016/0262-8856(94)90058-2 – ident: ref4 doi: 10.1002/jmri.1880050520 – ident: ref33 doi: 10.1109/72.238310 – ident: ref19 doi: 10.1148/radiology.178.1.1984289 – volume: 16 start-page: 241 year: 1995 ident: ref21 article-title: quantitative volumetric analysis of brain mr: normative database spanning five decades of life publication-title: Amer J Neuroradiol contributor: fullname: blatter – ident: ref20 doi: 10.1002/jmri.1880050502 – ident: ref16 doi: 10.1016/0730-725X(94)00124-L – year: 1965 ident: ref42 publication-title: Fundamental Statistics in Psychology and Education contributor: fullname: guilford – ident: ref10 doi: 10.1109/42.370400 – volume: 152 start-page: 987 year: 1995 ident: ref6 article-title: magnetic resonance imaging measurements of gray matter volume reductions in hiv dementia publication-title: Amer J Psych doi: 10.1176/ajp.152.7.987 contributor: fullname: aylward – ident: ref40 doi: 10.1016/0262-8856(92)90021-T – ident: ref39 doi: 10.1097/00004728-199303000-00007 – ident: ref24 doi: 10.1109/42.310878 – ident: ref29 doi: 10.1109/42.511747 – ident: ref15 doi: 10.1016/0730-725X(94)90085-6 |
SSID | ssj0014509 |
Score | 2.1046233 |
Snippet | Presents a fully automated process for segmentation and classification of multispectral magnetic resonance (MR) images. This hybrid neural network method uses... We present a fully automated process for segmentation and classification of multispectral magnetic resonance (MR) images. This hybrid neural network method... A hybrid neural network method was used to fully automate the segmentation and classification of multispectral magnetic resonance (MR) images. The method... |
SourceID | proquest crossref pubmed pascalfrancis ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 911 |
SubjectTerms | Adult Artificial neural networks Backpropagation Biological and medical sciences Biological neural networks Brain Brain - anatomy & histology Female Humans Image Processing, Computer-Assisted - methods Image segmentation Investigative techniques, diagnostic techniques (general aspects) Magnetic multilayers Magnetic resonance Magnetic Resonance Imaging Male Medical imaging Medical sciences Multi-layer neural network Nervous system Neural networks Neural Networks (Computer) Neurophysiology Radiodiagnosis. Nmr imagery. Nmr spectrometry Reproducibility of Results Volume measurement |
Title | Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks |
URI | https://ieeexplore.ieee.org/document/650887 https://www.ncbi.nlm.nih.gov/pubmed/9533591 https://search.proquest.com/docview/21298466 https://search.proquest.com/docview/28660981 https://search.proquest.com/docview/79584209 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Na9VAEF9sQakHP54Wq1YX8ZrXTbLZZI5FLEXQk4Xewn5MHiJNSpNcPPi3O7Ob97BixVPCZkKyX9nfZn7zGyHeOxvow1_YDLyuM00In-ZcKDN2QuUBglE2qn1-MecX-tNldbnobMdYGESM5DNc82n05YfBz_yr7CShiT2xVwOkUK2dw0BXic1RsGCsMsUiIpQrONHFOt14IO4zmbKC_NYiFLOqMCfSjtQsXcpncTfgjAvP2eMU0T1GvULmm3xfz5Nb-x9_qDn-Z52eiEcLAJWnacQ8FfewX4mHv8kSrsSDz4vD_Zn4eTpPA4FaDHLEzdUSqNRL2wfpGXgz0ygVDZ2M7MQYu3lDj7iym55DJCXt6AfW9UD5jcpwZFPHqSkks-43kkdvErKQLK8ZD5GcPj4XF2cfv344z5aUDZnXkE9ZqCqvG2isqY1zBHVoenedpyUQyzJUNkCHTfDgVe1D3nWNxoZzYmlWTEbtykOx3w89vhCytnlQrvBVE4z2qnM15IA1u98cqBKOxLttH7bXSZmjjTsaBa0u2tSuR2LFTb4z2JYe3-rs3WXan9H2ia6_3XZ-S7ONXSi2x2EeyaAAQmzmHxaNMQqa_G6LGgj0FYoqcJjG1e7xy-h8-deXfiUOonRupNK8FvvTzYzHBIgm9yZOhV_MOgo7 |
link.rule.ids | 315,783,787,799,27936,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELVaKgocWrqAgJZiVb1mcRLHsY-oKtq2wAkkbpG_sqoqEkSSCwd-OzN2dgWoVD0lciZK_BU_Z968IeSr0Q4-_JlOlOVlwgHhw5xzeYJOqNQpJ5gOap_nYnbJf14VV6POdoiF8d4H8pmf4mnw5bvWDvir7CiiidfkDcBqKWKw1tJlwIvI58hQMpaJbJQRSpk64tk03rpOVpFOWaj0yTIU8qogK1J30DB1zGjxMuQMS8_J-xjT3QXFQmSc_JkOvZnau2d6jv9Zq03yboSg9DiOmQ_klW8mZOORMOGEvD0bXe5b5P546FuAtd7Rzs-vx1ClhurGUYvQG7lGsaitaeAnhujNW3jEtZ43GCRJYU_forKHp7-hzHdoajA5BUXe_Zzi-I1SFhQFNsMh0NO7bXJ58v3i2ywZkzYklqu0T1xRWC6V1KIUxgDYgQle1xYWQZ_nrtBO1V46qywrrUvrWnIvMSsWR81kz02-Q1aatvG7hJY6dcxktpBOcMtqU6pU-RIdcEaxXO2RL4s-rG6iNkcV9jRMVTyrYrvukQk2-dJgUXrwpLOXl2GHBhsouH646PwK5hs6UXTj26EDg0wBZhP_sJBCMCXTly1KBbAvY1CBnTiulo8fR-f-X1_6kKzNLs5Oq9Mf578-kvUgpBuINZ_ISn87-AOAR735HKbFA82EDYY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+segmentation+and+classification+of+multispectral+magnetic+resonance+images+of+brain+using+artificial+neural+networks&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Reddick%2C+W.E.&rft.au=Glass%2C+J.O.&rft.au=Cook%2C+E.N.&rft.au=Elkin%2C+T.D.&rft.date=1997-12-01&rft.pub=IEEE&rft.issn=0278-0062&rft.volume=16&rft.issue=6&rft.spage=911&rft.epage=918&rft_id=info:doi/10.1109%2F42.650887&rft_id=info%3Apmid%2F9533591&rft.externalDocID=650887 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |