Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks

Presents a fully automated process for segmentation and classification of multispectral magnetic resonance (MR) images. This hybrid neural network method uses a Kohonen self-organizing neural network for segmentation and a multilayer backpropagation neural network for classification. To separate dif...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 16; no. 6; pp. 911 - 918
Main Authors Reddick, W.E., Glass, J.O., Cook, E.N., Elkin, T.D., Deaton, R.J.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.12.1997
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Presents a fully automated process for segmentation and classification of multispectral magnetic resonance (MR) images. This hybrid neural network method uses a Kohonen self-organizing neural network for segmentation and a multilayer backpropagation neural network for classification. To separate different tissue types, this process uses the standard T1-, T2-, and PD-weighted MR images acquired in clinical examinations. Volumetric measurements of brain structures, relative to intracranial volume, were calculated for an index transverse section in 14 normal subjects (median age 25 years; 7 male, 7 female). This index slice was at the level of the basal ganglia, included both genu and splenium of the corpus callosum, and generally, showed the putamen and lateral ventricle. An intraclass correlation of this automated segmentation and classification of tissues with the accepted standard of radiologist identification for the index slice in the 14 volunteers demonstrated coefficients (r/sub i/) of 0.91, 0.95, and 0.98 for white matter, gray matter, and ventricular cerebrospinal fluid (CSF), respectively. An analysis of variance for estimates of brain parenchyma volumes in 5 volunteers imaged 5 times each demonstrated high intrasubject reproducibility with a significance of at least p<0.05 for white matter, gray matter, and white/gray partial volumes. The population variation, across 14 volunteers, demonstrated little deviation from the averages for gray and white matter, while partial volume classes exhibited a slightly higher degree of variability. This fully automated technique produces reliable and reproducible MR image segmentation and classification while eliminating intra- and interobserver variability.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0278-0062
1558-254X
DOI:10.1109/42.650887