Optimization of wavefront reconstruction accuracy for conjugate shift differential absolute testing

The conjugate shift differential method, based on Fourier transforms, is critical for surface error testing of high-precision optical elements. However, this common approach is also prone to periodic spectrum loss. As such, this paper proposes conjugate double shift differential (CDSD) absolute test...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 12; no. 1; p. 21751
Main Authors Zhu, Xueliang, Wang, Dasen, Zhang, Mengyao, Liu, Bingcai, Tian, Ailing, Jin, Guiying, Zheng, Xianfeng
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 16.12.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The conjugate shift differential method, based on Fourier transforms, is critical for surface error testing of high-precision optical elements. However, this common approach is also prone to periodic spectrum loss. As such, this paper proposes conjugate double shift differential (CDSD) absolute testing, which can effectively compensate for spectrum loss and achieve accurate wavefront reconstructions. Spectrum loss in the single shift differential method is analyzed through a study of the Fourier reconstruction process. A calculation model for the proposed CDSD method is then established and constraint conditions for shift quantities are provided by analyzing double shear effects observed in transverse shear interference. Finally, the reconstruction accuracies of various spectrum compensation methods are compared. Results showed that spectrum loss became more evident with increasing shift amounts. However, the CDSD method produced the smallest measurement error compared with conventional direct zero filling and adjacent point averaging, suggesting our approach could effectively improve absolute shape measurement accuracy for planar optical elements.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-022-26380-y