Imprecision nutrition? Different simultaneous continuous glucose monitors provide discordant meal rankings for incremental postprandial glucose in subjects without diabetes

High postprandial glucose excursions may increase risk for disease. Individuals have widely varying glucose responses to different meals, and precision nutrition approaches often seek to personalize diets to minimize postprandial glycemic responses as measured by continuous glucose monitors (CGMs)....

Full description

Saved in:
Bibliographic Details
Published inThe American journal of clinical nutrition Vol. 112; no. 4; pp. 1114 - 1119
Main Authors Howard, Rebecca, Guo, Juen, Hall, Kevin D
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.10.2020
Oxford University Press
American Society for Clinical Nutrition, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:High postprandial glucose excursions may increase risk for disease. Individuals have widely varying glucose responses to different meals, and precision nutrition approaches often seek to personalize diets to minimize postprandial glycemic responses as measured by continuous glucose monitors (CGMs). However, it is unknown whether different CGM devices result in concordant meal rankings according to postprandial glycemic excursions. We explored whether meal rankings according to postprandial glycemic excursions differ between 2 simultaneously worn CGMs. We collected 27,489 simultaneous measurements from Dexcom G4 Platinum and Abbott Freestyle Libre Pro CGMs during 28 inpatient days in 16 adults without diabetes. Simultaneous glucose measurements obtained for 2 h following 760 ad libitum meals were used to compare within-subject meal rankings between the CGM devices according to their incremental glucose response. Postprandial responses to ad libitum meals were highly variable, with the Abbott and Dexcom systems resulting in within-subject incremental mean ± SD glucose CVs of 91.7 ± 1.9% and 94.2 ± 2.7%, respectively. Within-subject meal rankings for incremental glycemic responses were relatively discordant between CGMs, with a mean Kendall rank correlation coefficient of 0.43 ± 0.05. Meals in the bottom compared with those in the top half of incremental glycemic responses ranked by Abbott resulted in 50 ± 10% (P = 0.0002) less glycemic reduction as measured by Dexcom, and vice versa. The missing glycemic reduction by eating meals ranked according to the discordant CGM was inversely correlated with each subject’s Kendall rank correlation coefficient (r = −0.95; P < 0.0001). Precision nutrition approaches that use CGMs to personalize meal recommendations for minimizing glycemic excursions may be premature given the discordance of within-subject meal rankings between simultaneous CGM devices. More research is needed to clarify the source of this imprecision. This trial was registered at clinicaltrials.gov as NCT03407053.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0002-9165
1938-3207
1938-3207
DOI:10.1093/ajcn/nqaa198