Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: fixed-focus and antenna-array sensors

A novel focused active microwave system is investigated for detecting tumors in the breast. In contrast to X-ray and ultrasound modalities, the method reviewed here exploits the breast-tissue physical properties unique to the microwave spectrum, namely, the translucent nature of normal breast tissue...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 45; no. 12; pp. 1470 - 1479
Main Authors Hagness, S.C., Taflove, A., Bridges, J.E.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.12.1998
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A novel focused active microwave system is investigated for detecting tumors in the breast. In contrast to X-ray and ultrasound modalities, the method reviewed here exploits the breast-tissue physical properties unique to the microwave spectrum, namely, the translucent nature of normal breast tissues and the high dielectric contrast between malignant tumors and surrounding lesion-free normal breast tissues. The system uses a pulsed confocal technique and time-gating to enhance the detection of tumors while suppressing the effects of tissue heterogeneity and absorption. Using published data for the dielectric properties of normal breast tissues and malignant tumors, the authors have conducted a two-dimensional (2-D) finite-difference time-domain (FDTD) computational electromagnetics analysis of the system. The FDTD simulations showed that tumors as small as 2 mm in diameter could be robustly detected in the presence of the background clutter generated by the heterogeneity of the surrounding normal tissue. Lateral spatial resolution of the tumor location was found to be about 0.5 cm.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0018-9294
1558-2531
DOI:10.1109/10.730440