Bacterial Diversity Associated with the Coccolithophorid Algae Emiliania huxleyi and Coccolithus pelagicus f. braarudii
Coccolithophores are unicellular calcifying marine phytoplankton that can form large and conspicuous blooms in the oceans and make significant contributions to oceanic carbon cycling and atmospheric CO2 regulation. Despite their importance, the bacterial diversity associated with these algae has not...
Saved in:
Published in | BioMed research international Vol. 2015; no. 2015; pp. 1 - 15 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cairo, Egypt
Hindawi Publishing Corporation
01.01.2015
John Wiley & Sons, Inc Hindawi Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Coccolithophores are unicellular calcifying marine phytoplankton that can form large and conspicuous blooms in the oceans and make significant contributions to oceanic carbon cycling and atmospheric CO2 regulation. Despite their importance, the bacterial diversity associated with these algae has not been explored for ecological or biotechnological reasons. Bacterial membership of Emiliania huxleyi and Coccolithus pelagicus f. braarudii cultures was assessed using cultivation and cultivation-independent methods. The communities were species rich compared to other phytoplankton cultures. Community analysis identified specific taxa which cooccur in all cultures (Marinobacter and Marivita). Hydrocarbon-degrading bacteria were found in all cultures. The presence of Acidobacteria, Acidimicrobidae, Schlegelella, and Thermomonas was unprecedented but were potentially explained by calcification associated with coccolith production. One strain of Acidobacteria was cultivated and is closely related to a marine Acidobacteria isolated from a sponge. From this assessment of the bacterial diversity of coccolithophores, a number of biotechnological opportunities are evident, from bioprospecting for novel taxa such as Acidobacteria to helping understand the relationship between obligate hydrocarbonoclastic bacteria occurrence with phytoplankton and to revealing bacterial taxa that have a specific association with algae and may be suitable candidates as a means to improve the efficiency of mass algal cultivation. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Academic Editor: Ameur Cherif |
ISSN: | 2314-6133 2314-6141 |
DOI: | 10.1155/2015/194540 |