Divalent counterion-induced condensation of triple-strand DNA

Understanding and manipulation of the forces assembling DNA/RNA helices have broad implications for biology, medicine, and physics. One subject of significance is the attractive force between dsDNA mediated by polycations of valence ≥3. Despite extensive studies, the physical origin of the "lik...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 107; no. 50; pp. 21482 - 21486
Main Authors Qiu, Xiangyun, Parsegian, V. Adrian, Rau, Donald C., Baldwin, Robert
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 14.12.2010
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Understanding and manipulation of the forces assembling DNA/RNA helices have broad implications for biology, medicine, and physics. One subject of significance is the attractive force between dsDNA mediated by polycations of valence ≥3. Despite extensive studies, the physical origin of the "like-charge attraction" remains unsettled among competing theories. Here we show that triple-strand DNA (tsDNA), a more highly charged helix than dsDNA, is precipitated by alkaline-earth divalent cations that are unable to condense dsDNA. We further show that our observation is general by examining several cations (Mg²⁺, Ba²⁺, and Ca²⁺) and two distinct tsDNA constructs. Cation-condensed tsDNA forms ordered hexagonal arrays that redissolve upon adding monovalent salts. Forces between tsDNA helices, measured by osmotic stress, follow the form of hydration forces observed with condensed dsDNA. Probing a well-defined system of point-like cations and tsDNAs with more evenly spaced helical charges, the counterintutive observation that the more highly charged tsDNA (vs. dsDNA) is condensed by cations of lower valence provides new insights into theories of polyelectrolytes and the biological and pathological roles of tsDNA. Cations and tsDNAs also hold promise as a model system for future studies of DNA—DNA interactions and electrostatic interactions in general.
AbstractList Understanding and manipulation of the forces assembling DNA/RNA helices have broad implications for biology, medicine, and physics. One subject of significance is the attractive force between dsDNA mediated by polycations of valence ≥3. Despite extensive studies, the physical origin of the “like-charge attraction” remains unsettled among competing theories. Here we show that triple-strand DNA (tsDNA), a more highly charged helix than dsDNA, is precipitated by alkaline-earth divalent cations that are unable to condense dsDNA. We further show that our observation is general by examining several cations (Mg 2+ , Ba 2+ , and Ca 2+ ) and two distinct tsDNA constructs. Cation-condensed tsDNA forms ordered hexagonal arrays that redissolve upon adding monovalent salts. Forces between tsDNA helices, measured by osmotic stress, follow the form of hydration forces observed with condensed dsDNA. Probing a well-defined system of point-like cations and tsDNAs with more evenly spaced helical charges, the counterintuitive observation that the more highly charged tsDNA (vs. dsDNA) is condensed by cations of lower valence provides new insights into theories of polyelectrolytes and the biological and pathological roles of tsDNA. Cations and tsDNAs also hold promise as a model system for future studies of DNA–DNA interactions and electrostatic interactions in general.
Understanding and manipulation of the forces assembling DNA/RNA helices have broad implications for biology, medicine, and physics. One subject of significance is the attractive force between dsDNA mediated by polycations of valence ≥3. Despite extensive studies, the physical origin of the "like-charge attraction" remains unsettled among competing theories. Here we show that triple-strand DNA (tsDNA), a more highly charged helix than dsDNA, is precipitated by alkaline-earth divalent cations that are unable to condense dsDNA. We further show that our observation is general by examining several cations (..., ..., and ...) and two distinct tsDNA constructs. Cation-condensed tsDNA forms ordered hexagonal arrays that redissolve upon adding monovalent salts. Forces between tsDNA helices, measured by osmotic stress, follow the form of hydration forces observed with condensed dsDNA. Probing a well-defined system of point-like cations and tsDNAs with more evenly spaced helical charges, the counterintuitive observation that the more highly charged tsDNA (vs. dsDNA) is condensed by cations of lower valence provides new insights into theories of polyelectrolytes and the biological and pathological roles of tsDNA. Cations and tsDNAs also hold promise as a model system for future studies of DNA-DNA interactions and electrostatic interactions in general. (ProQuest: ... denotes formulae/symbols omitted.)
Understanding and manipulation of the forces assembling DNA/RNA helices have broad implications for biology, medicine, and physics. One subject of significance is the attractive force between dsDNA mediated by polycations of valence ≥ 3. Despite extensive studies, the physical origin of the "like-charge attraction" remains unsettled among competing theories. Here we show that triple-strand DNA (tsDNA), a more highly charged helix than dsDNA, is precipitated by alkaline-earth divalent cations that are unable to condense dsDNA. We further show that our observation is general by examining several cations (Mg(2+), Ba(2+), and Ca(2+)) and two distinct tsDNA constructs. Cation-condensed tsDNA forms ordered hexagonal arrays that redissolve upon adding monovalent salts. Forces between tsDNA helices, measured by osmotic stress, follow the form of hydration forces observed with condensed dsDNA. Probing a well-defined system of point-like cations and tsDNAs with more evenly spaced helical charges, the counterintuitive observation that the more highly charged tsDNA (vs. dsDNA) is condensed by cations of lower valence provides new insights into theories of polyelectrolytes and the biological and pathological roles of tsDNA. Cations and tsDNAs also hold promise as a model system for future studies of DNA-DNA interactions and electrostatic interactions in general.
Understanding and manipulation of the forces assembling DNA/RNA helices have broad implications for biology, medicine, and physics. One subject of significance is the attractive force between dsDNA mediated by polycations of valence ≥3. Despite extensive studies, the physical origin of the "like-charge attraction" remains unsettled among competing theories. Here we show that triple-strand DNA (tsDNA), a more highly charged helix than dsDNA, is precipitated by alkaline-earth divalent cations that are unable to condense dsDNA. We further show that our observation is general by examining several cations (Mg²⁺, Ba²⁺, and Ca²⁺) and two distinct tsDNA constructs. Cation-condensed tsDNA forms ordered hexagonal arrays that redissolve upon adding monovalent salts. Forces between tsDNA helices, measured by osmotic stress, follow the form of hydration forces observed with condensed dsDNA. Probing a well-defined system of point-like cations and tsDNAs with more evenly spaced helical charges, the counterintutive observation that the more highly charged tsDNA (vs. dsDNA) is condensed by cations of lower valence provides new insights into theories of polyelectrolytes and the biological and pathological roles of tsDNA. Cations and tsDNAs also hold promise as a model system for future studies of DNA—DNA interactions and electrostatic interactions in general.
Understanding and manipulation of the forces assembling DNA/RNA helices have broad implications for biology, medicine, and physics. One subject of significance is the attractive force between dsDNA mediated by polycations of valence ≥3. Despite extensive studies, the physical origin of the “like-charge attraction” remains unsettled among competing theories. Here we show that triple-strand DNA (tsDNA), a more highly charged helix than dsDNA, is precipitated by alkaline-earth divalent cations that are unable to condense dsDNA. We further show that our observation is general by examining several cations (Mg 2+ , Ba 2+ , and Ca 2+ ) and two distinct tsDNA constructs. Cation-condensed tsDNA forms ordered hexagonal arrays that redissolve upon adding monovalent salts. Forces between tsDNA helices, measured by osmotic stress, follow the form of hydration forces observed with condensed dsDNA. Probing a well-defined system of point-like cations and tsDNAs with more evenly spaced helical charges, the counterintuitive observation that the more highly charged tsDNA (vs. dsDNA) is condensed by cations of lower valence provides new insights into theories of polyelectrolytes and the biological and pathological roles of tsDNA. Cations and tsDNAs also hold promise as a model system for future studies of DNA–DNA interactions and electrostatic interactions in general.
Understanding and manipulation of the forces assembling DNA/RNA helices have broad implications for biology, medicine, and physics. One subject of significance is the attractive force between dsDNA mediated by polycations of valence ≥ 3. Despite extensive studies, the physical origin of the "like-charge attraction" remains unsettled among competing theories. Here we show that triple-strand DNA (tsDNA), a more highly charged helix than dsDNA, is precipitated by alkaline-earth divalent cations that are unable to condense dsDNA. We further show that our observation is general by examining several cations (Mg(2+), Ba(2+), and Ca(2+)) and two distinct tsDNA constructs. Cation-condensed tsDNA forms ordered hexagonal arrays that redissolve upon adding monovalent salts. Forces between tsDNA helices, measured by osmotic stress, follow the form of hydration forces observed with condensed dsDNA. Probing a well-defined system of point-like cations and tsDNAs with more evenly spaced helical charges, the counterintuitive observation that the more highly charged tsDNA (vs. dsDNA) is condensed by cations of lower valence provides new insights into theories of polyelectrolytes and the biological and pathological roles of tsDNA. Cations and tsDNAs also hold promise as a model system for future studies of DNA-DNA interactions and electrostatic interactions in general.Understanding and manipulation of the forces assembling DNA/RNA helices have broad implications for biology, medicine, and physics. One subject of significance is the attractive force between dsDNA mediated by polycations of valence ≥ 3. Despite extensive studies, the physical origin of the "like-charge attraction" remains unsettled among competing theories. Here we show that triple-strand DNA (tsDNA), a more highly charged helix than dsDNA, is precipitated by alkaline-earth divalent cations that are unable to condense dsDNA. We further show that our observation is general by examining several cations (Mg(2+), Ba(2+), and Ca(2+)) and two distinct tsDNA constructs. Cation-condensed tsDNA forms ordered hexagonal arrays that redissolve upon adding monovalent salts. Forces between tsDNA helices, measured by osmotic stress, follow the form of hydration forces observed with condensed dsDNA. Probing a well-defined system of point-like cations and tsDNAs with more evenly spaced helical charges, the counterintuitive observation that the more highly charged tsDNA (vs. dsDNA) is condensed by cations of lower valence provides new insights into theories of polyelectrolytes and the biological and pathological roles of tsDNA. Cations and tsDNAs also hold promise as a model system for future studies of DNA-DNA interactions and electrostatic interactions in general.
Author Rau, Donald C.
Baldwin, Robert
Qiu, Xiangyun
Parsegian, V. Adrian
Author_xml – sequence: 1
  givenname: Xiangyun
  surname: Qiu
  fullname: Qiu, Xiangyun
– sequence: 2
  givenname: V. Adrian
  surname: Parsegian
  fullname: Parsegian, V. Adrian
– sequence: 3
  givenname: Donald C.
  surname: Rau
  fullname: Rau, Donald C.
– sequence: 4
  givenname: Robert
  surname: Baldwin
  fullname: Baldwin, Robert
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21098260$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1v1DAQhq2qqN0Wzj2BIi6cQseOndgHKlUtX1IFl94trzMBr7L2Yjsr9d_jsEu39MDJ1swzM--8c0aOffBIyAWF9xS65nLjTSo_aJqOl8ARWVBQtG65gmOyAGBdLTnjp-QspRUAKCHhhJyyQknWwoJ8uHVbM6LPlQ2Tzxhd8LXz_WSxLyHfo08ml2AVhipHtxmxTjka31e3365fkheDGRO-2r_n5P7Tx_ubL_Xd989fb67vassVzbWhaqAG0aihpWYpqZjHo6LcogVAKxg23YCKM2iYGobeMATGOF0KMLQ5J1e7tptpucbeFrnRjHoT3drEBx2M0_9mvPupf4StboozxYPS4N2-QQy_JkxZr12yOI7GY5iSlkIyyVs5j3r7jFyFKfqynJZUiuJrxwv05qmeRyF_bS3A5Q6wMaQUcXhEKOj5cHo-nD4crlSIZxXW5T_Gl4Xc-J-6ai9lThymdFpA0cMlK8jrHbJKOcSDWNGJVlFofgN2MbDb
CitedBy_id crossref_primary_10_1021_acs_jpcb_6b02650
crossref_primary_10_1016_j_bpj_2018_03_001
crossref_primary_10_1103_PhysRevE_88_052703
crossref_primary_10_1016_j_colsurfa_2022_128507
crossref_primary_10_1021_acsomega_1c00613
crossref_primary_10_1080_07391102_2013_848411
crossref_primary_10_1039_D0CS00594K
crossref_primary_10_1038_s41598_020_78684_6
crossref_primary_10_1039_c2sm25789k
crossref_primary_10_1002_anie_201800409
crossref_primary_10_1093_nar_gkv570
crossref_primary_10_1088_1674_1056_26_12_128706
crossref_primary_10_1088_1478_3975_8_6_066006
crossref_primary_10_3390_computation6010003
crossref_primary_10_1038_srep27079
crossref_primary_10_1039_c3sm51325d
crossref_primary_10_1063_1_4890656
crossref_primary_10_1103_PhysRevE_85_061925
crossref_primary_10_1039_c0cp02796k
crossref_primary_10_1093_nar_gkaa499
crossref_primary_10_1002_bip_22868
crossref_primary_10_1038_s41598_017_14636_x
crossref_primary_10_1002_cbic_202400237
crossref_primary_10_1016_j_bpj_2017_06_021
crossref_primary_10_3389_fmolb_2021_666369
crossref_primary_10_1021_acs_jpcb_8b05575
crossref_primary_10_1016_j_bpj_2013_03_033
crossref_primary_10_1016_j_physleta_2013_05_011
crossref_primary_10_1039_D3SM00957B
crossref_primary_10_3389_fphy_2021_696104
crossref_primary_10_1017_S003358351200011X
crossref_primary_10_1016_j_ccr_2014_09_005
crossref_primary_10_1021_acs_jctc_3c00520
crossref_primary_10_1063_1_5120756
crossref_primary_10_1021_acs_chemmater_1c01832
crossref_primary_10_1021_acsnano_7b01592
crossref_primary_10_1039_C3CP53655F
crossref_primary_10_1038_srep23434
crossref_primary_10_1007_s10909_016_1627_4
crossref_primary_10_1371_journal_pone_0119705
crossref_primary_10_1021_acsomega_9b01689
crossref_primary_10_1063_5_0159341
crossref_primary_10_1016_j_biochi_2013_02_012
crossref_primary_10_1021_jp4010955
crossref_primary_10_1039_c3nr01630g
crossref_primary_10_3390_nano5010246
crossref_primary_10_1021_jp312766u
crossref_primary_10_1002_ange_201800409
crossref_primary_10_1039_D1SM01171E
crossref_primary_10_1016_j_bpj_2015_05_006
crossref_primary_10_1088_1674_1056_27_1_018203
crossref_primary_10_1016_j_bpj_2020_05_001
crossref_primary_10_1021_bm2009476
crossref_primary_10_1261_rna_073882_119
crossref_primary_10_1016_j_bpj_2018_01_040
Cites_doi 10.1016/0076-6879(95)59039-0
10.1140/epje/e2004-00039-x
10.1073/pnas.97.26.14046
10.1016/j.cocis.2006.12.003
10.1002/(SICI)1097-0282(1997)44:3<269::AID-BIP6>3.0.CO;2-T
10.1063/1.1325230
10.1021/ja0530218
10.1529/biophysj.104.040113
10.1016/0009-2614(84)87039-6
10.1063/1.470459
10.1021/jp960458g
10.1093/nar/30.10.2154
10.1096/fj.07-097857
10.1529/biophysj.107.127332
10.1021/bi9825753
10.1146/annurev.pc.44.100193.002101
10.1103/PhysRevLett.100.118301
10.1172/JCI19552
10.1007/s101890170123
10.1038/nature01596
10.1103/PhysRevLett.82.4138
10.1209/epl/i2005-10512-5
10.1201/9780849387999
10.1529/biophysj.106.084285
10.1016/S0959-440X(00)00205-0
10.1080/07391102.2000.10506589
10.1063/1.446912
10.1038/2530
10.1073/pnas.81.9.2621
10.1016/S0006-3495(92)81831-3
10.1016/j.jmb.2008.08.053
10.1021/ja075020g
10.1073/pnas.0600282103
10.1016/j.physrep.2005.06.006
10.1093/nar/23.4.689
10.1103/PhysRevLett.82.3268
10.1103/PhysRevE.60.4496
10.1063/1.1288022
ContentType Journal Article
Copyright Copyright National Academy of Sciences Dec 14, 2010
Copyright_xml – notice: Copyright National Academy of Sciences Dec 14, 2010
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1003374107
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
Virology and AIDS Abstracts
MEDLINE
CrossRef


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 21486
ExternalDocumentID PMC3003027
2216307921
21098260
10_1073_pnas_1003374107
107_50_21482
25756910
Genre Journal Article
Research Support, N.I.H., Intramural
Feature
GrantInformation_xml – fundername: Intramural NIH HHS
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
AS
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c491t-a19f1aeea9f61ab8150982e914cec00ec52e37fe9420329ffda2e02241b50a13
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:29:57 EDT 2025
Fri Jul 11 15:56:08 EDT 2025
Mon Jun 30 08:26:41 EDT 2025
Mon Jul 21 05:38:47 EDT 2025
Tue Jul 01 00:47:02 EDT 2025
Thu Apr 24 23:03:53 EDT 2025
Wed Nov 11 00:30:54 EST 2020
Thu May 29 08:40:52 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 50
Language English
License Freely available online through the PNAS open access option.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c491t-a19f1aeea9f61ab8150982e914cec00ec52e37fe9420329ffda2e02241b50a13
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Edited by Robert Baldwin, Stanford University, Stanford, CA, and approved October 26, 2010 (received for review March 22, 2010)
Author contributions: X.Q., V.A.P., and D.C.R. designed research; X.Q. and D.C.R. performed research; X.Q. and D.C.R. contributed new reagents/analytic tools; X.Q., V.A.P., and D.C.R. analyzed data; and X.Q., V.A.P., and D.C.R. wrote the paper.
PMID 21098260
PQID 818549074
PQPubID 42026
PageCount 5
ParticipantIDs pnas_primary_107_50_21482
crossref_primary_10_1073_pnas_1003374107
proquest_miscellaneous_858284681
proquest_journals_818549074
jstor_primary_25756910
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3003027
crossref_citationtrail_10_1073_pnas_1003374107
pubmed_primary_21098260
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-12-14
PublicationDateYYYYMMDD 2010-12-14
PublicationDate_xml – month: 12
  year: 2010
  text: 2010-12-14
  day: 14
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2010
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
Soyfer VN (e_1_3_3_22_2) 1995
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_3_2
e_1_3_3_21_2
18775729 - J Mol Biol. 2008 Nov 7;383(2):292-300
7899090 - Nucleic Acids Res. 1995 Feb 25;23(4):689-95
18517834 - Phys Rev Lett. 2008 Mar 21;100(11):118301
1540693 - Biophys J. 1992 Jan;61(1):246-59
15024615 - Eur Phys J E Soft Matter. 2004 Jan;13(1):43-59
15489310 - Biophys J. 2005 Jan;88(1):392-403
9771719 - Nat Genet. 1998 Oct;20(2):212-4
18211957 - FASEB J. 2008 Jun;22(6):1625-34
12000835 - Nucleic Acids Res. 2002 May 15;30(10):2154-61
9591479 - Biopolymers. 1997;44(3):269-82
11406377 - Curr Opin Struct Biol. 2001 Jun;11(3):293-301
10090772 - Biochemistry. 1999 Mar 23;38(12):3821-30
11970304 - Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Oct;60(4 Pt B):4496-9
17990882 - J Am Chem Soc. 2007 Dec 5;129(48):14981-8
12712207 - Nature. 2003 Apr 24;422(6934):909-13
11121015 - Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14046-51
8257560 - Annu Rev Phys Chem. 1993;44:369-95
6585818 - Proc Natl Acad Sci U S A. 1984 May;81(9):2621-5
16648172 - Biophys J. 2006 Jul 15;91(2):518-36
8538466 - Methods Enzymol. 1995;259:43-94
10949168 - J Biomol Struct Dyn. 2000 Jun;17(6):1011-22
16144414 - J Am Chem Soc. 2005 Sep 14;127(36):12657-65
18326632 - Biophys J. 2008 Jun;94(12):4775-82
16670200 - Proc Natl Acad Sci U S A. 2006 May 16;103(20):7560-5
12925687 - J Clin Invest. 2003 Aug;112(4):487-94
References_xml – ident: e_1_3_3_33_2
  doi: 10.1016/0076-6879(95)59039-0
– ident: e_1_3_3_10_2
  doi: 10.1140/epje/e2004-00039-x
– ident: e_1_3_3_30_2
  doi: 10.1073/pnas.97.26.14046
– ident: e_1_3_3_5_2
  doi: 10.1016/j.cocis.2006.12.003
– ident: e_1_3_3_2_2
  doi: 10.1002/(SICI)1097-0282(1997)44:3<269::AID-BIP6>3.0.CO;2-T
– ident: e_1_3_3_1_2
  doi: 10.1063/1.1325230
– ident: e_1_3_3_27_2
  doi: 10.1021/ja0530218
– ident: e_1_3_3_32_2
  doi: 10.1529/biophysj.104.040113
– ident: e_1_3_3_6_2
  doi: 10.1016/0009-2614(84)87039-6
– ident: e_1_3_3_12_2
  doi: 10.1063/1.470459
– ident: e_1_3_3_8_2
  doi: 10.1021/jp960458g
– ident: e_1_3_3_29_2
  doi: 10.1093/nar/30.10.2154
– ident: e_1_3_3_26_2
  doi: 10.1096/fj.07-097857
– ident: e_1_3_3_35_2
  doi: 10.1529/biophysj.107.127332
– ident: e_1_3_3_28_2
  doi: 10.1021/bi9825753
– ident: e_1_3_3_31_2
  doi: 10.1146/annurev.pc.44.100193.002101
– ident: e_1_3_3_20_2
  doi: 10.1103/PhysRevLett.100.118301
– volume-title: Triple Helical Nucleic Acids
  year: 1995
  ident: e_1_3_3_22_2
– ident: e_1_3_3_24_2
  doi: 10.1172/JCI19552
– ident: e_1_3_3_17_2
  doi: 10.1007/s101890170123
– ident: e_1_3_3_38_2
  doi: 10.1038/nature01596
– ident: e_1_3_3_21_2
  doi: 10.1103/PhysRevLett.82.4138
– ident: e_1_3_3_15_2
  doi: 10.1209/epl/i2005-10512-5
– ident: e_1_3_3_3_2
  doi: 10.1201/9780849387999
– ident: e_1_3_3_14_2
  doi: 10.1529/biophysj.106.084285
– ident: e_1_3_3_4_2
  doi: 10.1016/S0959-440X(00)00205-0
– ident: e_1_3_3_23_2
  doi: 10.1080/07391102.2000.10506589
– ident: e_1_3_3_7_2
  doi: 10.1063/1.446912
– ident: e_1_3_3_25_2
  doi: 10.1038/2530
– ident: e_1_3_3_36_2
  doi: 10.1073/pnas.81.9.2621
– ident: e_1_3_3_11_2
  doi: 10.1016/S0006-3495(92)81831-3
– ident: e_1_3_3_37_2
  doi: 10.1016/j.jmb.2008.08.053
– ident: e_1_3_3_34_2
  doi: 10.1021/ja075020g
– ident: e_1_3_3_13_2
  doi: 10.1073/pnas.0600282103
– ident: e_1_3_3_19_2
  doi: 10.1016/j.physrep.2005.06.006
– ident: e_1_3_3_39_2
  doi: 10.1093/nar/23.4.689
– ident: e_1_3_3_9_2
  doi: 10.1103/PhysRevLett.82.3268
– ident: e_1_3_3_16_2
  doi: 10.1103/PhysRevE.60.4496
– ident: e_1_3_3_18_2
  doi: 10.1063/1.1288022
– reference: 15489310 - Biophys J. 2005 Jan;88(1):392-403
– reference: 10090772 - Biochemistry. 1999 Mar 23;38(12):3821-30
– reference: 1540693 - Biophys J. 1992 Jan;61(1):246-59
– reference: 18517834 - Phys Rev Lett. 2008 Mar 21;100(11):118301
– reference: 9591479 - Biopolymers. 1997;44(3):269-82
– reference: 10949168 - J Biomol Struct Dyn. 2000 Jun;17(6):1011-22
– reference: 12000835 - Nucleic Acids Res. 2002 May 15;30(10):2154-61
– reference: 7899090 - Nucleic Acids Res. 1995 Feb 25;23(4):689-95
– reference: 9771719 - Nat Genet. 1998 Oct;20(2):212-4
– reference: 18775729 - J Mol Biol. 2008 Nov 7;383(2):292-300
– reference: 18326632 - Biophys J. 2008 Jun;94(12):4775-82
– reference: 11121015 - Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14046-51
– reference: 12925687 - J Clin Invest. 2003 Aug;112(4):487-94
– reference: 11970304 - Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Oct;60(4 Pt B):4496-9
– reference: 15024615 - Eur Phys J E Soft Matter. 2004 Jan;13(1):43-59
– reference: 16648172 - Biophys J. 2006 Jul 15;91(2):518-36
– reference: 16670200 - Proc Natl Acad Sci U S A. 2006 May 16;103(20):7560-5
– reference: 16144414 - J Am Chem Soc. 2005 Sep 14;127(36):12657-65
– reference: 6585818 - Proc Natl Acad Sci U S A. 1984 May;81(9):2621-5
– reference: 8257560 - Annu Rev Phys Chem. 1993;44:369-95
– reference: 8538466 - Methods Enzymol. 1995;259:43-94
– reference: 17990882 - J Am Chem Soc. 2007 Dec 5;129(48):14981-8
– reference: 11406377 - Curr Opin Struct Biol. 2001 Jun;11(3):293-301
– reference: 18211957 - FASEB J. 2008 Jun;22(6):1625-34
– reference: 12712207 - Nature. 2003 Apr 24;422(6934):909-13
SSID ssj0009580
Score 2.262795
Snippet Understanding and manipulation of the forces assembling DNA/RNA helices have broad implications for biology, medicine, and physics. One subject of significance...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 21482
SubjectTerms Animals
Biological Sciences
Cations
Cations, Divalent - chemistry
Cells
Chickens
Condensation
Deoxyribonucleic acid
Divalent cations
DNA
DNA - chemistry
Electrostatics
Ions
Nucleic Acid Conformation
Nucleic acids
Polyelectrolytes
rev genes
Ribonucleic acid
RNA
Salts
Temperature
Thermodynamics
X ray diffraction
Title Divalent counterion-induced condensation of triple-strand DNA
URI https://www.jstor.org/stable/25756910
http://www.pnas.org/content/107/50/21482.abstract
https://www.ncbi.nlm.nih.gov/pubmed/21098260
https://www.proquest.com/docview/818549074
https://www.proquest.com/docview/858284681
https://pubmed.ncbi.nlm.nih.gov/PMC3003027
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELeq8cILYsAgDFAeeBiqUuKPfPixgk0TGqWgDvUtcjJnq4RS1DYP8CfwV3MXO06yjQl4iar4Eqe-8_l35_MdIa_DXES0BEs10loEoiziQFFFAx0Xgon4Ik-aqiUfZ_HpufiwjJaj0a9e1FK9yyfFz1vPlfwPV-Ee8BVPyf4DZ91L4Qb8Bv7CFTgM17_i8fsVvA0385uKD9DjugrAxq5xTx_sXFApW4cIdxt0qQfo2cDg49m0D0vnbhnbtkEDs9ZLOO3OnFhFsB0H4_msq2D8eVUjp5YgaZc_aidtc7CZ9eXKeFi_jqcXm54oflG1we_omrauWut8MIEctHM-3vUpfa3LYCUU5qz0RBtFCzgliIUpFeo0sSmAa0XOJKR1ilWYIkU3VD7oKKxTXKktRnxwDhDJvmaQXHv2KTs5PzvLFsfLxbC1WcwZA2AaJhJzEtxjYHKw1vPjEjin5jiT_S9tmqiEv73W9wDhmCBXzJwLRLdZMdeDcXvoZvGQPLBmiT81MrZPRrp6RPbbQfaPbHbyN4-JEzr_ptD5faHz16U_EDofhO4JWZwcL96dBrYGR1AISXcwcWVJldZKljFVeQr2g0yZllQUughDXURM86TUUrCQM1mWF4rpBhfmUagoPyB71brSz4ifcs4x-w_TBRVJkkhZpkwBAtalBNxbeGTSDltW2Pz0WCblW9bESSQ8wyHMunH2yJF74LtJzfJn0oOGD44OFqooBqTsEa8h7Z5PsijMGmnzyGHLrcxO-m2G-FagQ8kjvmsFjYzbbKrS6xpIcCdaxCn1yFPD2q5biqMXQ7fJgOmOAJO9D1uq1VWT9J3jcsyS53d-1CG5383SF2Rvt6n1SwDNu_xVI82_AYoGv-k
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Divalent+counterion-induced+condensation+of+triple-strand+DNA&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Qiu%2C+Xiangyun&rft.au=Parsegian%2C+V+Adrian&rft.au=Rau%2C+Donald+C&rft.date=2010-12-14&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=107&rft.issue=50&rft.spage=21482&rft_id=info:doi/10.1073%2Fpnas.1003374107&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2216307921
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F50.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F50.cover.gif