Divalent counterion-induced condensation of triple-strand DNA
Understanding and manipulation of the forces assembling DNA/RNA helices have broad implications for biology, medicine, and physics. One subject of significance is the attractive force between dsDNA mediated by polycations of valence ≥3. Despite extensive studies, the physical origin of the "lik...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 107; no. 50; pp. 21482 - 21486 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
14.12.2010
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Understanding and manipulation of the forces assembling DNA/RNA helices have broad implications for biology, medicine, and physics. One subject of significance is the attractive force between dsDNA mediated by polycations of valence ≥3. Despite extensive studies, the physical origin of the "like-charge attraction" remains unsettled among competing theories. Here we show that triple-strand DNA (tsDNA), a more highly charged helix than dsDNA, is precipitated by alkaline-earth divalent cations that are unable to condense dsDNA. We further show that our observation is general by examining several cations (Mg²⁺, Ba²⁺, and Ca²⁺) and two distinct tsDNA constructs. Cation-condensed tsDNA forms ordered hexagonal arrays that redissolve upon adding monovalent salts. Forces between tsDNA helices, measured by osmotic stress, follow the form of hydration forces observed with condensed dsDNA. Probing a well-defined system of point-like cations and tsDNAs with more evenly spaced helical charges, the counterintutive observation that the more highly charged tsDNA (vs. dsDNA) is condensed by cations of lower valence provides new insights into theories of polyelectrolytes and the biological and pathological roles of tsDNA. Cations and tsDNAs also hold promise as a model system for future studies of DNA—DNA interactions and electrostatic interactions in general. |
---|---|
AbstractList | Understanding and manipulation of the forces assembling DNA/RNA helices have broad implications for biology, medicine, and physics. One subject of significance is the attractive force between dsDNA mediated by polycations of valence ≥3. Despite extensive studies, the physical origin of the “like-charge attraction” remains unsettled among competing theories. Here we show that triple-strand DNA (tsDNA), a more highly charged helix than dsDNA, is precipitated by alkaline-earth divalent cations that are unable to condense dsDNA. We further show that our observation is general by examining several cations (Mg
2+
, Ba
2+
, and Ca
2+
) and two distinct tsDNA constructs. Cation-condensed tsDNA forms ordered hexagonal arrays that redissolve upon adding monovalent salts. Forces between tsDNA helices, measured by osmotic stress, follow the form of hydration forces observed with condensed dsDNA. Probing a well-defined system of point-like cations and tsDNAs with more evenly spaced helical charges, the counterintuitive observation that the more highly charged tsDNA (vs. dsDNA) is condensed by cations of lower valence provides new insights into theories of polyelectrolytes and the biological and pathological roles of tsDNA. Cations and tsDNAs also hold promise as a model system for future studies of DNA–DNA interactions and electrostatic interactions in general. Understanding and manipulation of the forces assembling DNA/RNA helices have broad implications for biology, medicine, and physics. One subject of significance is the attractive force between dsDNA mediated by polycations of valence ≥3. Despite extensive studies, the physical origin of the "like-charge attraction" remains unsettled among competing theories. Here we show that triple-strand DNA (tsDNA), a more highly charged helix than dsDNA, is precipitated by alkaline-earth divalent cations that are unable to condense dsDNA. We further show that our observation is general by examining several cations (..., ..., and ...) and two distinct tsDNA constructs. Cation-condensed tsDNA forms ordered hexagonal arrays that redissolve upon adding monovalent salts. Forces between tsDNA helices, measured by osmotic stress, follow the form of hydration forces observed with condensed dsDNA. Probing a well-defined system of point-like cations and tsDNAs with more evenly spaced helical charges, the counterintuitive observation that the more highly charged tsDNA (vs. dsDNA) is condensed by cations of lower valence provides new insights into theories of polyelectrolytes and the biological and pathological roles of tsDNA. Cations and tsDNAs also hold promise as a model system for future studies of DNA-DNA interactions and electrostatic interactions in general. (ProQuest: ... denotes formulae/symbols omitted.) Understanding and manipulation of the forces assembling DNA/RNA helices have broad implications for biology, medicine, and physics. One subject of significance is the attractive force between dsDNA mediated by polycations of valence ≥ 3. Despite extensive studies, the physical origin of the "like-charge attraction" remains unsettled among competing theories. Here we show that triple-strand DNA (tsDNA), a more highly charged helix than dsDNA, is precipitated by alkaline-earth divalent cations that are unable to condense dsDNA. We further show that our observation is general by examining several cations (Mg(2+), Ba(2+), and Ca(2+)) and two distinct tsDNA constructs. Cation-condensed tsDNA forms ordered hexagonal arrays that redissolve upon adding monovalent salts. Forces between tsDNA helices, measured by osmotic stress, follow the form of hydration forces observed with condensed dsDNA. Probing a well-defined system of point-like cations and tsDNAs with more evenly spaced helical charges, the counterintuitive observation that the more highly charged tsDNA (vs. dsDNA) is condensed by cations of lower valence provides new insights into theories of polyelectrolytes and the biological and pathological roles of tsDNA. Cations and tsDNAs also hold promise as a model system for future studies of DNA-DNA interactions and electrostatic interactions in general. Understanding and manipulation of the forces assembling DNA/RNA helices have broad implications for biology, medicine, and physics. One subject of significance is the attractive force between dsDNA mediated by polycations of valence ≥3. Despite extensive studies, the physical origin of the "like-charge attraction" remains unsettled among competing theories. Here we show that triple-strand DNA (tsDNA), a more highly charged helix than dsDNA, is precipitated by alkaline-earth divalent cations that are unable to condense dsDNA. We further show that our observation is general by examining several cations (Mg²⁺, Ba²⁺, and Ca²⁺) and two distinct tsDNA constructs. Cation-condensed tsDNA forms ordered hexagonal arrays that redissolve upon adding monovalent salts. Forces between tsDNA helices, measured by osmotic stress, follow the form of hydration forces observed with condensed dsDNA. Probing a well-defined system of point-like cations and tsDNAs with more evenly spaced helical charges, the counterintutive observation that the more highly charged tsDNA (vs. dsDNA) is condensed by cations of lower valence provides new insights into theories of polyelectrolytes and the biological and pathological roles of tsDNA. Cations and tsDNAs also hold promise as a model system for future studies of DNA—DNA interactions and electrostatic interactions in general. Understanding and manipulation of the forces assembling DNA/RNA helices have broad implications for biology, medicine, and physics. One subject of significance is the attractive force between dsDNA mediated by polycations of valence ≥3. Despite extensive studies, the physical origin of the “like-charge attraction” remains unsettled among competing theories. Here we show that triple-strand DNA (tsDNA), a more highly charged helix than dsDNA, is precipitated by alkaline-earth divalent cations that are unable to condense dsDNA. We further show that our observation is general by examining several cations (Mg 2+ , Ba 2+ , and Ca 2+ ) and two distinct tsDNA constructs. Cation-condensed tsDNA forms ordered hexagonal arrays that redissolve upon adding monovalent salts. Forces between tsDNA helices, measured by osmotic stress, follow the form of hydration forces observed with condensed dsDNA. Probing a well-defined system of point-like cations and tsDNAs with more evenly spaced helical charges, the counterintuitive observation that the more highly charged tsDNA (vs. dsDNA) is condensed by cations of lower valence provides new insights into theories of polyelectrolytes and the biological and pathological roles of tsDNA. Cations and tsDNAs also hold promise as a model system for future studies of DNA–DNA interactions and electrostatic interactions in general. Understanding and manipulation of the forces assembling DNA/RNA helices have broad implications for biology, medicine, and physics. One subject of significance is the attractive force between dsDNA mediated by polycations of valence ≥ 3. Despite extensive studies, the physical origin of the "like-charge attraction" remains unsettled among competing theories. Here we show that triple-strand DNA (tsDNA), a more highly charged helix than dsDNA, is precipitated by alkaline-earth divalent cations that are unable to condense dsDNA. We further show that our observation is general by examining several cations (Mg(2+), Ba(2+), and Ca(2+)) and two distinct tsDNA constructs. Cation-condensed tsDNA forms ordered hexagonal arrays that redissolve upon adding monovalent salts. Forces between tsDNA helices, measured by osmotic stress, follow the form of hydration forces observed with condensed dsDNA. Probing a well-defined system of point-like cations and tsDNAs with more evenly spaced helical charges, the counterintuitive observation that the more highly charged tsDNA (vs. dsDNA) is condensed by cations of lower valence provides new insights into theories of polyelectrolytes and the biological and pathological roles of tsDNA. Cations and tsDNAs also hold promise as a model system for future studies of DNA-DNA interactions and electrostatic interactions in general.Understanding and manipulation of the forces assembling DNA/RNA helices have broad implications for biology, medicine, and physics. One subject of significance is the attractive force between dsDNA mediated by polycations of valence ≥ 3. Despite extensive studies, the physical origin of the "like-charge attraction" remains unsettled among competing theories. Here we show that triple-strand DNA (tsDNA), a more highly charged helix than dsDNA, is precipitated by alkaline-earth divalent cations that are unable to condense dsDNA. We further show that our observation is general by examining several cations (Mg(2+), Ba(2+), and Ca(2+)) and two distinct tsDNA constructs. Cation-condensed tsDNA forms ordered hexagonal arrays that redissolve upon adding monovalent salts. Forces between tsDNA helices, measured by osmotic stress, follow the form of hydration forces observed with condensed dsDNA. Probing a well-defined system of point-like cations and tsDNAs with more evenly spaced helical charges, the counterintuitive observation that the more highly charged tsDNA (vs. dsDNA) is condensed by cations of lower valence provides new insights into theories of polyelectrolytes and the biological and pathological roles of tsDNA. Cations and tsDNAs also hold promise as a model system for future studies of DNA-DNA interactions and electrostatic interactions in general. |
Author | Rau, Donald C. Baldwin, Robert Qiu, Xiangyun Parsegian, V. Adrian |
Author_xml | – sequence: 1 givenname: Xiangyun surname: Qiu fullname: Qiu, Xiangyun – sequence: 2 givenname: V. Adrian surname: Parsegian fullname: Parsegian, V. Adrian – sequence: 3 givenname: Donald C. surname: Rau fullname: Rau, Donald C. – sequence: 4 givenname: Robert surname: Baldwin fullname: Baldwin, Robert |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21098260$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1v1DAQhq2qqN0Wzj2BIi6cQseOndgHKlUtX1IFl94trzMBr7L2Yjsr9d_jsEu39MDJ1swzM--8c0aOffBIyAWF9xS65nLjTSo_aJqOl8ARWVBQtG65gmOyAGBdLTnjp-QspRUAKCHhhJyyQknWwoJ8uHVbM6LPlQ2Tzxhd8LXz_WSxLyHfo08ml2AVhipHtxmxTjka31e3365fkheDGRO-2r_n5P7Tx_ubL_Xd989fb67vassVzbWhaqAG0aihpWYpqZjHo6LcogVAKxg23YCKM2iYGobeMATGOF0KMLQ5J1e7tptpucbeFrnRjHoT3drEBx2M0_9mvPupf4StboozxYPS4N2-QQy_JkxZr12yOI7GY5iSlkIyyVs5j3r7jFyFKfqynJZUiuJrxwv05qmeRyF_bS3A5Q6wMaQUcXhEKOj5cHo-nD4crlSIZxXW5T_Gl4Xc-J-6ai9lThymdFpA0cMlK8jrHbJKOcSDWNGJVlFofgN2MbDb |
CitedBy_id | crossref_primary_10_1021_acs_jpcb_6b02650 crossref_primary_10_1016_j_bpj_2018_03_001 crossref_primary_10_1103_PhysRevE_88_052703 crossref_primary_10_1016_j_colsurfa_2022_128507 crossref_primary_10_1021_acsomega_1c00613 crossref_primary_10_1080_07391102_2013_848411 crossref_primary_10_1039_D0CS00594K crossref_primary_10_1038_s41598_020_78684_6 crossref_primary_10_1039_c2sm25789k crossref_primary_10_1002_anie_201800409 crossref_primary_10_1093_nar_gkv570 crossref_primary_10_1088_1674_1056_26_12_128706 crossref_primary_10_1088_1478_3975_8_6_066006 crossref_primary_10_3390_computation6010003 crossref_primary_10_1038_srep27079 crossref_primary_10_1039_c3sm51325d crossref_primary_10_1063_1_4890656 crossref_primary_10_1103_PhysRevE_85_061925 crossref_primary_10_1039_c0cp02796k crossref_primary_10_1093_nar_gkaa499 crossref_primary_10_1002_bip_22868 crossref_primary_10_1038_s41598_017_14636_x crossref_primary_10_1002_cbic_202400237 crossref_primary_10_1016_j_bpj_2017_06_021 crossref_primary_10_3389_fmolb_2021_666369 crossref_primary_10_1021_acs_jpcb_8b05575 crossref_primary_10_1016_j_bpj_2013_03_033 crossref_primary_10_1016_j_physleta_2013_05_011 crossref_primary_10_1039_D3SM00957B crossref_primary_10_3389_fphy_2021_696104 crossref_primary_10_1017_S003358351200011X crossref_primary_10_1016_j_ccr_2014_09_005 crossref_primary_10_1021_acs_jctc_3c00520 crossref_primary_10_1063_1_5120756 crossref_primary_10_1021_acs_chemmater_1c01832 crossref_primary_10_1021_acsnano_7b01592 crossref_primary_10_1039_C3CP53655F crossref_primary_10_1038_srep23434 crossref_primary_10_1007_s10909_016_1627_4 crossref_primary_10_1371_journal_pone_0119705 crossref_primary_10_1021_acsomega_9b01689 crossref_primary_10_1063_5_0159341 crossref_primary_10_1016_j_biochi_2013_02_012 crossref_primary_10_1021_jp4010955 crossref_primary_10_1039_c3nr01630g crossref_primary_10_3390_nano5010246 crossref_primary_10_1021_jp312766u crossref_primary_10_1002_ange_201800409 crossref_primary_10_1039_D1SM01171E crossref_primary_10_1016_j_bpj_2015_05_006 crossref_primary_10_1088_1674_1056_27_1_018203 crossref_primary_10_1016_j_bpj_2020_05_001 crossref_primary_10_1021_bm2009476 crossref_primary_10_1261_rna_073882_119 crossref_primary_10_1016_j_bpj_2018_01_040 |
Cites_doi | 10.1016/0076-6879(95)59039-0 10.1140/epje/e2004-00039-x 10.1073/pnas.97.26.14046 10.1016/j.cocis.2006.12.003 10.1002/(SICI)1097-0282(1997)44:3<269::AID-BIP6>3.0.CO;2-T 10.1063/1.1325230 10.1021/ja0530218 10.1529/biophysj.104.040113 10.1016/0009-2614(84)87039-6 10.1063/1.470459 10.1021/jp960458g 10.1093/nar/30.10.2154 10.1096/fj.07-097857 10.1529/biophysj.107.127332 10.1021/bi9825753 10.1146/annurev.pc.44.100193.002101 10.1103/PhysRevLett.100.118301 10.1172/JCI19552 10.1007/s101890170123 10.1038/nature01596 10.1103/PhysRevLett.82.4138 10.1209/epl/i2005-10512-5 10.1201/9780849387999 10.1529/biophysj.106.084285 10.1016/S0959-440X(00)00205-0 10.1080/07391102.2000.10506589 10.1063/1.446912 10.1038/2530 10.1073/pnas.81.9.2621 10.1016/S0006-3495(92)81831-3 10.1016/j.jmb.2008.08.053 10.1021/ja075020g 10.1073/pnas.0600282103 10.1016/j.physrep.2005.06.006 10.1093/nar/23.4.689 10.1103/PhysRevLett.82.3268 10.1103/PhysRevE.60.4496 10.1063/1.1288022 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Dec 14, 2010 |
Copyright_xml | – notice: Copyright National Academy of Sciences Dec 14, 2010 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1003374107 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 21486 |
ExternalDocumentID | PMC3003027 2216307921 21098260 10_1073_pnas_1003374107 107_50_21482 25756910 |
Genre | Journal Article Research Support, N.I.H., Intramural Feature |
GrantInformation_xml | – fundername: Intramural NIH HHS |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW AS ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c491t-a19f1aeea9f61ab8150982e914cec00ec52e37fe9420329ffda2e02241b50a13 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:29:57 EDT 2025 Fri Jul 11 15:56:08 EDT 2025 Mon Jun 30 08:26:41 EDT 2025 Mon Jul 21 05:38:47 EDT 2025 Tue Jul 01 00:47:02 EDT 2025 Thu Apr 24 23:03:53 EDT 2025 Wed Nov 11 00:30:54 EST 2020 Thu May 29 08:40:52 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 50 |
Language | English |
License | Freely available online through the PNAS open access option. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c491t-a19f1aeea9f61ab8150982e914cec00ec52e37fe9420329ffda2e02241b50a13 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Edited by Robert Baldwin, Stanford University, Stanford, CA, and approved October 26, 2010 (received for review March 22, 2010) Author contributions: X.Q., V.A.P., and D.C.R. designed research; X.Q. and D.C.R. performed research; X.Q. and D.C.R. contributed new reagents/analytic tools; X.Q., V.A.P., and D.C.R. analyzed data; and X.Q., V.A.P., and D.C.R. wrote the paper. |
PMID | 21098260 |
PQID | 818549074 |
PQPubID | 42026 |
PageCount | 5 |
ParticipantIDs | pnas_primary_107_50_21482 crossref_primary_10_1073_pnas_1003374107 proquest_miscellaneous_858284681 proquest_journals_818549074 jstor_primary_25756910 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3003027 crossref_citationtrail_10_1073_pnas_1003374107 pubmed_primary_21098260 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-12-14 |
PublicationDateYYYYMMDD | 2010-12-14 |
PublicationDate_xml | – month: 12 year: 2010 text: 2010-12-14 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2010 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 Soyfer VN (e_1_3_3_22_2) 1995 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_3_2 e_1_3_3_21_2 18775729 - J Mol Biol. 2008 Nov 7;383(2):292-300 7899090 - Nucleic Acids Res. 1995 Feb 25;23(4):689-95 18517834 - Phys Rev Lett. 2008 Mar 21;100(11):118301 1540693 - Biophys J. 1992 Jan;61(1):246-59 15024615 - Eur Phys J E Soft Matter. 2004 Jan;13(1):43-59 15489310 - Biophys J. 2005 Jan;88(1):392-403 9771719 - Nat Genet. 1998 Oct;20(2):212-4 18211957 - FASEB J. 2008 Jun;22(6):1625-34 12000835 - Nucleic Acids Res. 2002 May 15;30(10):2154-61 9591479 - Biopolymers. 1997;44(3):269-82 11406377 - Curr Opin Struct Biol. 2001 Jun;11(3):293-301 10090772 - Biochemistry. 1999 Mar 23;38(12):3821-30 11970304 - Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Oct;60(4 Pt B):4496-9 17990882 - J Am Chem Soc. 2007 Dec 5;129(48):14981-8 12712207 - Nature. 2003 Apr 24;422(6934):909-13 11121015 - Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14046-51 8257560 - Annu Rev Phys Chem. 1993;44:369-95 6585818 - Proc Natl Acad Sci U S A. 1984 May;81(9):2621-5 16648172 - Biophys J. 2006 Jul 15;91(2):518-36 8538466 - Methods Enzymol. 1995;259:43-94 10949168 - J Biomol Struct Dyn. 2000 Jun;17(6):1011-22 16144414 - J Am Chem Soc. 2005 Sep 14;127(36):12657-65 18326632 - Biophys J. 2008 Jun;94(12):4775-82 16670200 - Proc Natl Acad Sci U S A. 2006 May 16;103(20):7560-5 12925687 - J Clin Invest. 2003 Aug;112(4):487-94 |
References_xml | – ident: e_1_3_3_33_2 doi: 10.1016/0076-6879(95)59039-0 – ident: e_1_3_3_10_2 doi: 10.1140/epje/e2004-00039-x – ident: e_1_3_3_30_2 doi: 10.1073/pnas.97.26.14046 – ident: e_1_3_3_5_2 doi: 10.1016/j.cocis.2006.12.003 – ident: e_1_3_3_2_2 doi: 10.1002/(SICI)1097-0282(1997)44:3<269::AID-BIP6>3.0.CO;2-T – ident: e_1_3_3_1_2 doi: 10.1063/1.1325230 – ident: e_1_3_3_27_2 doi: 10.1021/ja0530218 – ident: e_1_3_3_32_2 doi: 10.1529/biophysj.104.040113 – ident: e_1_3_3_6_2 doi: 10.1016/0009-2614(84)87039-6 – ident: e_1_3_3_12_2 doi: 10.1063/1.470459 – ident: e_1_3_3_8_2 doi: 10.1021/jp960458g – ident: e_1_3_3_29_2 doi: 10.1093/nar/30.10.2154 – ident: e_1_3_3_26_2 doi: 10.1096/fj.07-097857 – ident: e_1_3_3_35_2 doi: 10.1529/biophysj.107.127332 – ident: e_1_3_3_28_2 doi: 10.1021/bi9825753 – ident: e_1_3_3_31_2 doi: 10.1146/annurev.pc.44.100193.002101 – ident: e_1_3_3_20_2 doi: 10.1103/PhysRevLett.100.118301 – volume-title: Triple Helical Nucleic Acids year: 1995 ident: e_1_3_3_22_2 – ident: e_1_3_3_24_2 doi: 10.1172/JCI19552 – ident: e_1_3_3_17_2 doi: 10.1007/s101890170123 – ident: e_1_3_3_38_2 doi: 10.1038/nature01596 – ident: e_1_3_3_21_2 doi: 10.1103/PhysRevLett.82.4138 – ident: e_1_3_3_15_2 doi: 10.1209/epl/i2005-10512-5 – ident: e_1_3_3_3_2 doi: 10.1201/9780849387999 – ident: e_1_3_3_14_2 doi: 10.1529/biophysj.106.084285 – ident: e_1_3_3_4_2 doi: 10.1016/S0959-440X(00)00205-0 – ident: e_1_3_3_23_2 doi: 10.1080/07391102.2000.10506589 – ident: e_1_3_3_7_2 doi: 10.1063/1.446912 – ident: e_1_3_3_25_2 doi: 10.1038/2530 – ident: e_1_3_3_36_2 doi: 10.1073/pnas.81.9.2621 – ident: e_1_3_3_11_2 doi: 10.1016/S0006-3495(92)81831-3 – ident: e_1_3_3_37_2 doi: 10.1016/j.jmb.2008.08.053 – ident: e_1_3_3_34_2 doi: 10.1021/ja075020g – ident: e_1_3_3_13_2 doi: 10.1073/pnas.0600282103 – ident: e_1_3_3_19_2 doi: 10.1016/j.physrep.2005.06.006 – ident: e_1_3_3_39_2 doi: 10.1093/nar/23.4.689 – ident: e_1_3_3_9_2 doi: 10.1103/PhysRevLett.82.3268 – ident: e_1_3_3_16_2 doi: 10.1103/PhysRevE.60.4496 – ident: e_1_3_3_18_2 doi: 10.1063/1.1288022 – reference: 15489310 - Biophys J. 2005 Jan;88(1):392-403 – reference: 10090772 - Biochemistry. 1999 Mar 23;38(12):3821-30 – reference: 1540693 - Biophys J. 1992 Jan;61(1):246-59 – reference: 18517834 - Phys Rev Lett. 2008 Mar 21;100(11):118301 – reference: 9591479 - Biopolymers. 1997;44(3):269-82 – reference: 10949168 - J Biomol Struct Dyn. 2000 Jun;17(6):1011-22 – reference: 12000835 - Nucleic Acids Res. 2002 May 15;30(10):2154-61 – reference: 7899090 - Nucleic Acids Res. 1995 Feb 25;23(4):689-95 – reference: 9771719 - Nat Genet. 1998 Oct;20(2):212-4 – reference: 18775729 - J Mol Biol. 2008 Nov 7;383(2):292-300 – reference: 18326632 - Biophys J. 2008 Jun;94(12):4775-82 – reference: 11121015 - Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14046-51 – reference: 12925687 - J Clin Invest. 2003 Aug;112(4):487-94 – reference: 11970304 - Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Oct;60(4 Pt B):4496-9 – reference: 15024615 - Eur Phys J E Soft Matter. 2004 Jan;13(1):43-59 – reference: 16648172 - Biophys J. 2006 Jul 15;91(2):518-36 – reference: 16670200 - Proc Natl Acad Sci U S A. 2006 May 16;103(20):7560-5 – reference: 16144414 - J Am Chem Soc. 2005 Sep 14;127(36):12657-65 – reference: 6585818 - Proc Natl Acad Sci U S A. 1984 May;81(9):2621-5 – reference: 8257560 - Annu Rev Phys Chem. 1993;44:369-95 – reference: 8538466 - Methods Enzymol. 1995;259:43-94 – reference: 17990882 - J Am Chem Soc. 2007 Dec 5;129(48):14981-8 – reference: 11406377 - Curr Opin Struct Biol. 2001 Jun;11(3):293-301 – reference: 18211957 - FASEB J. 2008 Jun;22(6):1625-34 – reference: 12712207 - Nature. 2003 Apr 24;422(6934):909-13 |
SSID | ssj0009580 |
Score | 2.262795 |
Snippet | Understanding and manipulation of the forces assembling DNA/RNA helices have broad implications for biology, medicine, and physics. One subject of significance... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 21482 |
SubjectTerms | Animals Biological Sciences Cations Cations, Divalent - chemistry Cells Chickens Condensation Deoxyribonucleic acid Divalent cations DNA DNA - chemistry Electrostatics Ions Nucleic Acid Conformation Nucleic acids Polyelectrolytes rev genes Ribonucleic acid RNA Salts Temperature Thermodynamics X ray diffraction |
Title | Divalent counterion-induced condensation of triple-strand DNA |
URI | https://www.jstor.org/stable/25756910 http://www.pnas.org/content/107/50/21482.abstract https://www.ncbi.nlm.nih.gov/pubmed/21098260 https://www.proquest.com/docview/818549074 https://www.proquest.com/docview/858284681 https://pubmed.ncbi.nlm.nih.gov/PMC3003027 |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELeq8cILYsAgDFAeeBiqUuKPfPixgk0TGqWgDvUtcjJnq4RS1DYP8CfwV3MXO06yjQl4iar4Eqe-8_l35_MdIa_DXES0BEs10loEoiziQFFFAx0Xgon4Ik-aqiUfZ_HpufiwjJaj0a9e1FK9yyfFz1vPlfwPV-Ee8BVPyf4DZ91L4Qb8Bv7CFTgM17_i8fsVvA0385uKD9DjugrAxq5xTx_sXFApW4cIdxt0qQfo2cDg49m0D0vnbhnbtkEDs9ZLOO3OnFhFsB0H4_msq2D8eVUjp5YgaZc_aidtc7CZ9eXKeFi_jqcXm54oflG1we_omrauWut8MIEctHM-3vUpfa3LYCUU5qz0RBtFCzgliIUpFeo0sSmAa0XOJKR1ilWYIkU3VD7oKKxTXKktRnxwDhDJvmaQXHv2KTs5PzvLFsfLxbC1WcwZA2AaJhJzEtxjYHKw1vPjEjin5jiT_S9tmqiEv73W9wDhmCBXzJwLRLdZMdeDcXvoZvGQPLBmiT81MrZPRrp6RPbbQfaPbHbyN4-JEzr_ptD5faHz16U_EDofhO4JWZwcL96dBrYGR1AISXcwcWVJldZKljFVeQr2g0yZllQUughDXURM86TUUrCQM1mWF4rpBhfmUagoPyB71brSz4ifcs4x-w_TBRVJkkhZpkwBAtalBNxbeGTSDltW2Pz0WCblW9bESSQ8wyHMunH2yJF74LtJzfJn0oOGD44OFqooBqTsEa8h7Z5PsijMGmnzyGHLrcxO-m2G-FagQ8kjvmsFjYzbbKrS6xpIcCdaxCn1yFPD2q5biqMXQ7fJgOmOAJO9D1uq1VWT9J3jcsyS53d-1CG5383SF2Rvt6n1SwDNu_xVI82_AYoGv-k |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Divalent+counterion-induced+condensation+of+triple-strand+DNA&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Qiu%2C+Xiangyun&rft.au=Parsegian%2C+V+Adrian&rft.au=Rau%2C+Donald+C&rft.date=2010-12-14&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=107&rft.issue=50&rft.spage=21482&rft_id=info:doi/10.1073%2Fpnas.1003374107&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2216307921 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F50.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F50.cover.gif |