Burden of malaria infection among individuals of varied blood groups in Kenya
Abstract Background The ABO blood groups consist of A, B, and H carbohydrate antigens, which regulate protein activities during malaria infection in humans. Understanding the interplay between the malaria parasite and blood group antigens is essential in understanding new interventions to reduce the...
Saved in:
Published in | Malaria journal Vol. 21; no. 1; pp. 1 - 251 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central Ltd
01.09.2022
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Abstract
Background
The ABO blood groups consist of A, B, and H carbohydrate antigens, which regulate protein activities during malaria infection in humans. Understanding the interplay between the malaria parasite and blood group antigens is essential in understanding new interventions to reduce the global burden of malaria. This study assessed the burden of malaria infection among individuals with varying blood groups seeking treatment at selected hospitals in Kenya.
Methods
A total of 366 samples from an ongoing malaria surveillance study were diagnosed for malaria by microscopy and further typed for blood group using ABO blood grouping. Age and sex were recorded in a data sheet, and analysed using R software version 4. Groups’ proportions (blood group, malaria infection, age and sex) were compared using Pearson’s Chi-square and Fischer exact tests. Wilcoxon and Kruskal-Wallis tests were performed and P-value < 0.05 was considered significant after Bonferroni correction for multiple comparisons. To understand the effect of each blood group on parasitaemia, multivariate logistic regression was used to model ABO blood group in relation to parasitaemia.
Results
Of the 366 samples analysed, 312 were malaria positive, mean age was 9.83 years (< 5 years n = 152 (48.41%), 6 to 17 years n = 101 (32.16%) and > 18 years n = 61 (19.43%)). Malaria prevalence was higher among females than males, 54.46% and 45.54%, respectively. Kisumu enrolled the highest number 109 (35%)) of malaria cases, Kombewa 108 (35%), Malindi 32 (10%), Kisii 28 (9%), Marigat 23 (7%), and Kericho 12 (4%). Blood group O
+
was the most prevalent among the enrolled individuals (46.50%), A
+
(27.71%), B
+
(21.02%) and AB
+
(4.78%) respectively. Compared to blood group O+, blood group B
+
individuals were (14%) were more likely to habour
Plasmodium falciparum
infection as opposed to A
+
and AB
+
individuals, that were 7% and 20%, respectively,. Those living in malaria-endemic zones presented with higher parasite densities compared to those living in malaria-epidemic (p = 0.0061). Individuals bearing B + blood group are more likely to habour high parasitaemia compared to O + blood group bearers (OR = 4.47, CI = 1.53–13.05, p = 0.006).
Conclusion
Individuals of blood group B harbour high parasitaemia compared with the blood group O, Additionally, blood group A and B present with symptoms at lower parasitaemia than blood group O. Regardles of malaria transmission zones, individuals from endemic zones showed up with high parasitaemia and among them were more individuals of blood groups A and B than individuals of blood group O. Implying that these individuals were more at risk and require additional attention and effective case management.
Garphical Abstract |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1475-2875 1475-2875 |
DOI: | 10.1186/s12936-022-04251-1 |