Projections of climate change effects on discharge and inundation in the Amazon basin

Climate change and its effects on the hydrologic regime of the Amazon basin can impact biogeochemical processes, transportation, flood vulnerability, fisheries and hydropower generation. We examined projections of climate change on discharge and inundation extent in the Amazon basin using the region...

Full description

Saved in:
Bibliographic Details
Published inClimatic change Vol. 136; no. 3-4; pp. 555 - 570
Main Authors Sorribas, Mino Viana, Paiva, Rodrigo C. D., Melack, John M., Bravo, Juan Martin, Jones, Charles, Carvalho, Leila, Beighley, Edward, Forsberg, Bruce, Costa, Marcos Heil
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.06.2016
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Climate change and its effects on the hydrologic regime of the Amazon basin can impact biogeochemical processes, transportation, flood vulnerability, fisheries and hydropower generation. We examined projections of climate change on discharge and inundation extent in the Amazon basin using the regional hydrological model MGB-IPH with 1-dimensional river hydraulic and water storage simulation in floodplains. Future projections (2070–2099) were obtained from five GCMs from IPCC’s Fifth Assessment Report CMIP5. Climate projections have uncertainty and results from different climate models did not agree in total Amazon flooded area or discharge anomalies along the main stem river. Overall, model runs agree better with wetter (drier) conditions over western (eastern) Amazon. Results indicate that increased mean and maximum river discharge for large rivers draining the Andes in the northwest contributes to increased mean and maximum discharge and inundation extent over Peruvian floodplains and Solimões River (annual mean-max: +9 % - +18.3 %) in western Amazonia. Decreased river discharges (mostly dry season) are projected for eastern basins, and decreased inundation extent at low water (annual min) in the central (−15.9 %) and lower Amazon (−4.4 %).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0165-0009
1573-1480
DOI:10.1007/s10584-016-1640-2