Recombination Can Partially Substitute for SPO13 in Regulating Meiosis I in Budding Yeast

Recombination and chromosome synapsis bring homologous chromosomes together, creating chiasmata that ensure accurate disjunction during reductional division. SPO13 is a key gene required for meiosis I (MI) reductional segregation, but dispensable for recombination, in Saccharomyces cerevisiae. Absen...

Full description

Saved in:
Bibliographic Details
Published inGenetics (Austin) Vol. 155; no. 4; pp. 1607 - 1621
Main Authors Rutkowski, Lisa Henninger, Esposito, Rochelle Easton
Format Journal Article
LanguageEnglish
Published United States Genetics Soc America 01.08.2000
Genetics Society of America
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Recombination and chromosome synapsis bring homologous chromosomes together, creating chiasmata that ensure accurate disjunction during reductional division. SPO13 is a key gene required for meiosis I (MI) reductional segregation, but dispensable for recombination, in Saccharomyces cerevisiae. Absence of SPO13 leads to single-division meiosis where reductional segregation is largely eliminated, but other meiotic events occur relatively normally. This phenotype allows haploids to produce viable meiotic products. Spo13p is thought to act by delaying nuclear division until sister centromeres/chromatids undergo proper cohesion for segregation to the same pole at MI. In the present study, a search for new spo13-like mutations that allow haploid meiosis recovered only new spo13 alleles. Unexpectedly, an unusual reduced-expression allele (spo13-23) was recovered that behaves similarly to a null mutant in haploids but to a wild-type allele in diploids, dependent on the presence of recombining homologs rather than on a diploid genome. This finding demonstrates that in addition to promoting accurate homolog disjunction, recombination can also function to partially substitute for SPO13 in promoting sister cohesion. Analysis of various recombination-defective mutants indicates that this contribution of recombination to reductional segregation requires full levels of crossing over. The implications of these results regarding SPO13 function are discussed.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0016-6731
1943-2631
1943-2631
DOI:10.1093/genetics/155.4.1607