Artificial vision by multi-layered neural networks: Neocognitron and its advances
The neocognitron is a neural network model proposed by Fukushima (1980). Its architecture was suggested by neurophysiological findings on the visual systems of mammals. It is a hierarchical multi-layered network. It acquires the ability to robustly recognize visual patterns through learning. Althoug...
Saved in:
Published in | Neural networks Vol. 37; pp. 103 - 119 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.01.2013
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The neocognitron is a neural network model proposed by Fukushima (1980). Its architecture was suggested by neurophysiological findings on the visual systems of mammals. It is a hierarchical multi-layered network. It acquires the ability to robustly recognize visual patterns through learning. Although the neocognitron has a long history, modifications of the network to improve its performance are still going on. For example, a recent neocognitron uses a new learning rule, named add-if-silent, which makes the learning process much simpler and more stable. Nevertheless, a high recognition rate can be kept with a smaller scale of the network. Referring to the history of the neocognitron, this paper discusses recent advances in the neocognitron. We also show that various new functions can be realized by, for example, introducing top-down connections to the neocognitron: mechanism of selective attention, recognition and completion of partly occluded patterns, restoring occluded contours, and so on. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0893-6080 1879-2782 |
DOI: | 10.1016/j.neunet.2012.09.016 |