High-speed electrical backplane transmission using duobinary signaling

High-speed electrical data transmission through low-cost backplanes is a particularly challenging problem. We present for the first time a very effective approach that uses the concept of duobinary signaling to accomplish this task. Using a finite-impulse-response filter, we are able to compensate f...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on microwave theory and techniques Vol. 53; no. 1; pp. 152 - 160
Main Authors Sinsky, J.H., Duelk, M., Adamiecki, A.
Format Journal Article Conference Proceeding
LanguageEnglish
Published New York, NY IEEE 01.01.2005
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:High-speed electrical data transmission through low-cost backplanes is a particularly challenging problem. We present for the first time a very effective approach that uses the concept of duobinary signaling to accomplish this task. Using a finite-impulse-response filter, we are able to compensate for the phase and amplitude response of the backplane such that the resulting frequency response of the channel is that of an ideal duobinary filter. At the output of the backplane, we use an innovative pseudodigital circuit to convert the electrical duobinary to binary. For 10-Gb/s data transmission, we demonstrate a bit error rate <10/sup -13/ through electrical backplane traces up to 34 in in length on FR4. A full discussion of the concept, system architecture, and measured results are presented. Analysis is presented that compares and contrasts this approach to PAM-4 and standard nonreturn-to-zero signaling.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9480
1557-9670
DOI:10.1109/TMTT.2004.839326