Prediction for cardiovascular diseases based on laboratory data: An analysis of random forest model

Background To establish a prediction model for cardiovascular diseases (CVD) in the general population based on random forests. Methods A retrospective study involving 498 subjects was conducted in Xi'an Medical University between 2011 and 2018. The random forest algorithm was used to screen ou...

Full description

Saved in:
Bibliographic Details
Published inJournal of clinical laboratory analysis Vol. 34; no. 9; pp. e23421 - n/a
Main Authors Su, Xi, Xu, Yongyong, Tan, Zhijun, Wang, Xia, Yang, Peng, Su, Yani, Jiang, Yangyang, Qin, Sijia, Shang, Lei
Format Journal Article
LanguageEnglish
Published New York John Wiley & Sons, Inc 01.09.2020
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background To establish a prediction model for cardiovascular diseases (CVD) in the general population based on random forests. Methods A retrospective study involving 498 subjects was conducted in Xi'an Medical University between 2011 and 2018. The random forest algorithm was used to screen out the variables that greatly affected the CVD prediction and to establish a prediction model. The important variables were included in the multifactorial logistic regression analysis. The area under the curve (AUC) was compared between logistic regression model and random forest model. Results The random forest model revealed the variables, including the age, body mass index (BMI), fasting blood glucose (FBG), diastolic blood pressure (DBP), triglyceride (TG), systolic blood pressure (SBP), total cholesterol (TC), waist circumference, and high‐density lipoprotein‐cholesterol (HDL‐C), were more significant for CVD prediction; the AUC was 0.802 in CVD prediction. Multifactorial logistic regression analysis indicated that the risk factors for CVD included the age [odds ratio (OR): 1.14, 95% confidence intervals (CI): 1.10‐1.17, P < .001], BMI (OR: 1.13, 95% CI: 1.06‐1.20, P < .001), TG (OR: 1.11, 95% CI: 1.02‐1.22, P = .023), and DBP (OR: 1.04, 95% CI: 1.02‐1.06, P = .001); the AUC was 0.843 in CVD prediction. The established logistic regression prediction model was Logit P = Log[P/(1 − P)] = −11.47 + 0.13 × age + 0.12 × BMI + 0.11 × TG + 0.04 × DBP; P = 1/[1 + exp(−Logit P)]. People were prone to develop CVD at the time of P > .51. Conclusions A prediction model for CVD is developed in the general population based on random forests, which provides a simple tool for the early prediction of CVD.
AbstractList To establish a prediction model for cardiovascular diseases (CVD) in the general population based on random forests.BACKGROUNDTo establish a prediction model for cardiovascular diseases (CVD) in the general population based on random forests.A retrospective study involving 498 subjects was conducted in Xi'an Medical University between 2011 and 2018. The random forest algorithm was used to screen out the variables that greatly affected the CVD prediction and to establish a prediction model. The important variables were included in the multifactorial logistic regression analysis. The area under the curve (AUC) was compared between logistic regression model and random forest model.METHODSA retrospective study involving 498 subjects was conducted in Xi'an Medical University between 2011 and 2018. The random forest algorithm was used to screen out the variables that greatly affected the CVD prediction and to establish a prediction model. The important variables were included in the multifactorial logistic regression analysis. The area under the curve (AUC) was compared between logistic regression model and random forest model.The random forest model revealed the variables, including the age, body mass index (BMI), fasting blood glucose (FBG), diastolic blood pressure (DBP), triglyceride (TG), systolic blood pressure (SBP), total cholesterol (TC), waist circumference, and high-density lipoprotein-cholesterol (HDL-C), were more significant for CVD prediction; the AUC was 0.802 in CVD prediction. Multifactorial logistic regression analysis indicated that the risk factors for CVD included the age [odds ratio (OR): 1.14, 95% confidence intervals (CI): 1.10-1.17, P < .001], BMI (OR: 1.13, 95% CI: 1.06-1.20, P < .001), TG (OR: 1.11, 95% CI: 1.02-1.22, P = .023), and DBP (OR: 1.04, 95% CI: 1.02-1.06, P = .001); the AUC was 0.843 in CVD prediction. The established logistic regression prediction model was Logit P = Log[P/(1 - P)] = -11.47 + 0.13 × age + 0.12 × BMI + 0.11 × TG + 0.04 × DBP; P = 1/[1 + exp(-Logit P)]. People were prone to develop CVD at the time of P > .51.RESULTSThe random forest model revealed the variables, including the age, body mass index (BMI), fasting blood glucose (FBG), diastolic blood pressure (DBP), triglyceride (TG), systolic blood pressure (SBP), total cholesterol (TC), waist circumference, and high-density lipoprotein-cholesterol (HDL-C), were more significant for CVD prediction; the AUC was 0.802 in CVD prediction. Multifactorial logistic regression analysis indicated that the risk factors for CVD included the age [odds ratio (OR): 1.14, 95% confidence intervals (CI): 1.10-1.17, P < .001], BMI (OR: 1.13, 95% CI: 1.06-1.20, P < .001), TG (OR: 1.11, 95% CI: 1.02-1.22, P = .023), and DBP (OR: 1.04, 95% CI: 1.02-1.06, P = .001); the AUC was 0.843 in CVD prediction. The established logistic regression prediction model was Logit P = Log[P/(1 - P)] = -11.47 + 0.13 × age + 0.12 × BMI + 0.11 × TG + 0.04 × DBP; P = 1/[1 + exp(-Logit P)]. People were prone to develop CVD at the time of P > .51.A prediction model for CVD is developed in the general population based on random forests, which provides a simple tool for the early prediction of CVD.CONCLUSIONSA prediction model for CVD is developed in the general population based on random forests, which provides a simple tool for the early prediction of CVD.
BackgroundTo establish a prediction model for cardiovascular diseases (CVD) in the general population based on random forests.MethodsA retrospective study involving 498 subjects was conducted in Xi'an Medical University between 2011 and 2018. The random forest algorithm was used to screen out the variables that greatly affected the CVD prediction and to establish a prediction model. The important variables were included in the multifactorial logistic regression analysis. The area under the curve (AUC) was compared between logistic regression model and random forest model.ResultsThe random forest model revealed the variables, including the age, body mass index (BMI), fasting blood glucose (FBG), diastolic blood pressure (DBP), triglyceride (TG), systolic blood pressure (SBP), total cholesterol (TC), waist circumference, and high‐density lipoprotein‐cholesterol (HDL‐C), were more significant for CVD prediction; the AUC was 0.802 in CVD prediction. Multifactorial logistic regression analysis indicated that the risk factors for CVD included the age [odds ratio (OR): 1.14, 95% confidence intervals (CI): 1.10‐1.17, P < .001], BMI (OR: 1.13, 95% CI: 1.06‐1.20, P < .001), TG (OR: 1.11, 95% CI: 1.02‐1.22, P = .023), and DBP (OR: 1.04, 95% CI: 1.02‐1.06, P = .001); the AUC was 0.843 in CVD prediction. The established logistic regression prediction model was Logit P = Log[P/(1 − P)] = −11.47 + 0.13 × age + 0.12 × BMI + 0.11 × TG + 0.04 × DBP; P = 1/[1 + exp(−Logit P)]. People were prone to develop CVD at the time of P > .51.ConclusionsA prediction model for CVD is developed in the general population based on random forests, which provides a simple tool for the early prediction of CVD.
Background To establish a prediction model for cardiovascular diseases (CVD) in the general population based on random forests. Methods A retrospective study involving 498 subjects was conducted in Xi'an Medical University between 2011 and 2018. The random forest algorithm was used to screen out the variables that greatly affected the CVD prediction and to establish a prediction model. The important variables were included in the multifactorial logistic regression analysis. The area under the curve (AUC) was compared between logistic regression model and random forest model. Results The random forest model revealed the variables, including the age, body mass index (BMI), fasting blood glucose (FBG), diastolic blood pressure (DBP), triglyceride (TG), systolic blood pressure (SBP), total cholesterol (TC), waist circumference, and high‐density lipoprotein‐cholesterol (HDL‐C), were more significant for CVD prediction; the AUC was 0.802 in CVD prediction. Multifactorial logistic regression analysis indicated that the risk factors for CVD included the age [odds ratio (OR): 1.14, 95% confidence intervals (CI): 1.10‐1.17, P < .001], BMI (OR: 1.13, 95% CI: 1.06‐1.20, P < .001), TG (OR: 1.11, 95% CI: 1.02‐1.22, P = .023), and DBP (OR: 1.04, 95% CI: 1.02‐1.06, P = .001); the AUC was 0.843 in CVD prediction. The established logistic regression prediction model was Logit P = Log[P/(1 − P)] = −11.47 + 0.13 × age + 0.12 × BMI + 0.11 × TG + 0.04 × DBP; P = 1/[1 + exp(−Logit P)]. People were prone to develop CVD at the time of P > .51. Conclusions A prediction model for CVD is developed in the general population based on random forests, which provides a simple tool for the early prediction of CVD.
Author Su, Xi
Yang, Peng
Su, Yani
Xu, Yongyong
Wang, Xia
Shang, Lei
Tan, Zhijun
Qin, Sijia
Jiang, Yangyang
AuthorAffiliation 1 Department of Health Statistics Fourth Military Medical University Xi’an China
2 School of Health Management Xi’an Medical University Xi’an China
3 Data Center Shaanxi Provincial People’s Hospital Xi’an China
4 School of Stomatology Xi’an Medical University Xi’an China
AuthorAffiliation_xml – name: 1 Department of Health Statistics Fourth Military Medical University Xi’an China
– name: 2 School of Health Management Xi’an Medical University Xi’an China
– name: 4 School of Stomatology Xi’an Medical University Xi’an China
– name: 3 Data Center Shaanxi Provincial People’s Hospital Xi’an China
Author_xml – sequence: 1
  givenname: Xi
  surname: Su
  fullname: Su, Xi
  organization: Xi’an Medical University
– sequence: 2
  givenname: Yongyong
  surname: Xu
  fullname: Xu, Yongyong
  organization: Fourth Military Medical University
– sequence: 3
  givenname: Zhijun
  surname: Tan
  fullname: Tan, Zhijun
  organization: Fourth Military Medical University
– sequence: 4
  givenname: Xia
  surname: Wang
  fullname: Wang, Xia
  organization: Fourth Military Medical University
– sequence: 5
  givenname: Peng
  surname: Yang
  fullname: Yang, Peng
  organization: Fourth Military Medical University
– sequence: 6
  givenname: Yani
  surname: Su
  fullname: Su, Yani
  organization: Shaanxi Provincial People’s Hospital
– sequence: 7
  givenname: Yangyang
  surname: Jiang
  fullname: Jiang, Yangyang
  organization: Xi’an Medical University
– sequence: 8
  givenname: Sijia
  surname: Qin
  fullname: Qin, Sijia
  organization: Xi’an Medical University
– sequence: 9
  givenname: Lei
  orcidid: 0000-0002-3330-5391
  surname: Shang
  fullname: Shang, Lei
  email: sxlight@outlook.com
  organization: Fourth Military Medical University
BookMark eNp9kU9v1DAQxS1URLeFC5_AEheElOJ_SRwOSKsVLaCV4ABna2JPwCsnLnZStN8ehy0HKsRl5jC_92Y074KcTXFCQp5zdsUZE68PNsCVkErwR2TDWacroUV9RjZM67bSjMtzcpHzgTGmO948IedStKLWstsQ-zmh83b2caJDTNRCcj7eQbZLgESdzwgZM-1LdbRAAfqYYI7pSB3M8IZuJwoThGP2mcaBJphcHFcvzDMdo8PwlDweIGR8dt8vydfrd19276v9p5sPu-2-sqrjvKodQsuk423jNCgmFHa8t612zKLkgxp0rS2ibBnYnnFgVoqhEUpArQZey0vy9uR7u_QjOovTnCCY2-RHSEcTwZu_J5P_br7FO9PWgkuxGry8N0jxx1LuN6PPFkOACeOSTVmlFa91ywv64gF6iEsqf1gp1TSNaqQqFDtRNsWcEw7G-hnWZ5f9PhjOzJqgWRM0vxMsklcPJH_u_yfMT_BPH_D4H9J83O23J80vdgStxg
CitedBy_id crossref_primary_10_1186_s12906_023_04249_5
crossref_primary_10_3389_fpubh_2023_1213926
crossref_primary_10_2147_IJGM_S338389
crossref_primary_10_1515_cclm_2023_1037
crossref_primary_10_1016_j_engappai_2022_105352
crossref_primary_10_3389_fcvm_2022_994483
crossref_primary_10_1038_s41598_024_64463_0
crossref_primary_10_1007_s40292_022_00523_8
crossref_primary_10_1016_j_compbiomed_2021_105204
crossref_primary_10_1186_s12916_024_03273_7
crossref_primary_10_3390_ijerph191710877
crossref_primary_10_1186_s12889_024_21081_9
crossref_primary_10_1016_j_ceh_2024_12_003
crossref_primary_10_3103_S0027134922060042
crossref_primary_10_1155_2021_5047501
crossref_primary_10_3389_fimmu_2024_1367235
crossref_primary_10_3389_fmed_2023_1292761
crossref_primary_10_2147_IJGM_S329005
crossref_primary_10_1016_j_imu_2023_101316
crossref_primary_10_2196_68066
crossref_primary_10_4258_hir_2023_29_3_228
crossref_primary_10_1016_j_compbiomed_2022_106188
crossref_primary_10_12998_wjcc_v9_i29_8729
crossref_primary_10_1016_j_ejmp_2021_01_071
crossref_primary_10_1515_med_2022_0526
crossref_primary_10_3389_fcvm_2023_1224795
Cites_doi 10.1161/CIRCULATIONAHA.116.022367
10.1016/j.hfc.2016.12.006
10.1186/s12872-017-0591-5
10.1371/journal.pone.0174944
10.1016/j.ejvs.2017.02.004
10.1016/S0195-668X(03)00114-3
10.1007/s00702-012-0825-8
10.1038/srep13025
10.3390/nu5030981
10.1161/CIRCULATIONAHA.107.699579
10.1155/2012/476380
10.1161/01.CIR.0000145615.33955.83
10.1136/bmj.c2442
10.1016/j.jsams.2016.06.003
10.1016/j.jacc.2018.11.002
10.1016/j.jacc.2007.10.038
10.1186/1758-5996-5-31
10.1161/01.cir.0000437741.48606.98
10.1136/bmj.327.7426.1267
10.1161/CIRCULATIONAHA.111.075929
10.1161/CIR.0b013e3182009701
10.1023/A:1010933404324
10.4172/2161-1025.1000183
10.1001/archinte.162.16.1867
10.1038/oby.2004.73
10.1038/ncpcardio1324
10.1136/bmj.c6624
10.1016/j.cca.2014.01.015
10.1056/NEJMp1606181
10.1136/heart.88.3.222
10.1038/ng.2795
10.1186/s12885-019-6101-7
10.3109/02813432.2010.518407
10.17849/insm-47-01-31-39.1
10.1161/CIRCULATIONAHA.106.637793
10.1016/0140-6736(90)90878-9
10.1161/CIR.0000000000000485
10.1016/S1532-0464(03)00034-0
10.2147/VHRM.S104369
10.3389/fnagi.2017.00329
10.7326/0003-4819-144-12-200606200-00005
10.1097/XCE.0000000000000167
10.1113/JP270538
10.1016/j.jacl.2014.07.007
10.1016/j.tcm.2014.12.005
10.1016/j.amepre.2014.08.019
ContentType Journal Article
Copyright 2020 The Authors. published by Wiley Periodicals LLC
2020. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 The Authors. Journal of Clinical Laboratory Analysis published by Wiley Periodicals LLC.
Copyright_xml – notice: 2020 The Authors. published by Wiley Periodicals LLC
– notice: 2020. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 The Authors. Journal of Clinical Laboratory Analysis published by Wiley Periodicals LLC.
DBID 24P
AAYXX
CITATION
3V.
7QP
7T5
7U9
7X7
7XB
8C1
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
DOI 10.1002/jcla.23421
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Public Health Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Public Health
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate SU et al
EISSN 1098-2825
EndPage n/a
ExternalDocumentID PMC7521325
10_1002_jcla_23421
JCLA23421
Genre article
GrantInformation_xml – fundername: Special Scientific Research Program of Department of Education of Shaanxi Province
  funderid: 19JK0770
– fundername: Special Scientific Research Program of Department of Education of Shaanxi Province
  grantid: 19JK0770
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
6PF
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8C1
8FI
8FJ
8UM
930
A01
A03
A8Z
AAESR
AAEVG
AAHHS
AANHP
AAONW
AAWTL
AAZKR
ABCQN
ABEML
ABIJN
ABPVW
ABUWG
ACBWZ
ACCFJ
ACCMX
ACGFS
ACMXC
ACPRK
ACRPL
ACSCC
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADNMO
ADPDF
ADZMN
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFKRA
AFPWT
AFZJQ
AHMBA
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AVUZU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BBNVY
BCNDV
BDRZF
BENPR
BFHJK
BHBCM
BHPHI
BMXJE
BROTX
BRXPI
BY8
CCPQU
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DU5
DUUFO
EBD
EBS
EJD
EMOBN
F00
F01
F04
F1Z
F5P
FEDTE
FUBAC
FYUFA
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.X
HBH
HCIFZ
HF~
HHY
HMCUK
HVGLF
HYE
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
M65
M7P
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RPM
RWI
RX1
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
UKHRP
V2E
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XPP
XV2
~IA
~WT
AAYXX
AGQPQ
CITATION
PHGZM
PHGZT
3V.
7QP
7T5
7U9
7XB
8FE
8FH
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
GNUQQ
H94
K9.
LK8
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
7X8
5PM
ID FETCH-LOGICAL-c4911-5dea703d176d8a4024e91bc78d0ce31f4f858cee370acb01a0c32f6242a54f153
IEDL.DBID DR2
ISSN 0887-8013
1098-2825
IngestDate Thu Aug 21 18:21:34 EDT 2025
Thu Jul 10 19:55:09 EDT 2025
Wed Aug 13 07:57:49 EDT 2025
Tue Jul 01 02:27:43 EDT 2025
Thu Apr 24 22:52:25 EDT 2025
Wed Jan 22 16:33:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Attribution-NonCommercial
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4911-5dea703d176d8a4024e91bc78d0ce31f4f858cee370acb01a0c32f6242a54f153
Notes Funding information
This study was supported by Special Scientific Research Program of Department of Education of Shaanxi Province, China (Grant No. 19JK0770).
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3330-5391
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcla.23421
PMID 32725839
PQID 2446664634
PQPubID 105667
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7521325
proquest_miscellaneous_2428415871
proquest_journals_2446664634
crossref_citationtrail_10_1002_jcla_23421
crossref_primary_10_1002_jcla_23421
wiley_primary_10_1002_jcla_23421_JCLA23421
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2020
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: September 2020
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Hoboken
PublicationTitle Journal of clinical laboratory analysis
PublicationYear 2020
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 2019; 8
2017; 20
2015; 5
2012; 2012
2019; 73
2017; 47
2013; 45
2019; 34
2002; 35
2010; 341
2019; 19
2010; 340
2008; 5
2012; 125
2001; 45
2008; 51
2017; 135
2013; 5
2017; 9
2014; 431
2016; 12
2014; 129
2007; 115
2016; 6
2015; 48
2004; 110
2017; 53
2015; 25
2003; 327
1990; 335
2002; 162
2017; 17
2010; 28
2004; 12
2017; 13
2017; 12
2002; 88
2003; 24
2016; 134
2016; 375
2008; 117
2016; 594
2018; 96
2014; 8
2011; 123
2012; 119
2006; 144
(e_1_2_9_4_1) 2019; 34
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
Ben Abdelaziz A (e_1_2_9_3_1) 2018; 96
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  article-title: Random forests
  publication-title: Mach Learn
– volume: 8
  start-page: 473
  issue: 5
  year: 2014
  end-page: 888
  article-title: National lipid association recommendations for patient‐centered management of dyslipidemia: part 1 ‐executive summary
  publication-title: J Clin Lipidol
– volume: 119
  start-page: 1449
  issue: 11
  year: 2012
  end-page: 1453
  article-title: Indicators for elevated risk factors for alcohol‐withdrawal seizures: an analysis using a random forest algorithm
  publication-title: J Neural Transm
– volume: 96
  start-page: 760
  issue: 10–11
  year: 2018
  end-page: 773
  article-title: Profile and evolution of the Global Burden of Morbidity in the Maghreb (Tunisia, Morocco, Algeria). The Triple burden of morbidity
  publication-title: Tunis Med
– volume: 110
  start-page: 2678
  issue: 17
  year: 2004
  end-page: 2686
  article-title: Serum triglycerides as a risk factor for cardiovascular diseases in the Asia‐Pacific region
  publication-title: Circulation
– volume: 2012
  start-page: 476380
  year: 2012
  article-title: Inflammation as a link between obesity and metabolic syndrome
  publication-title: J Nutr Metab
– volume: 431
  start-page: 131
  year: 2014
  end-page: 142
  article-title: Postprandial hypertriglyceridemia as a coronary risk factor
  publication-title: Clin Chim Acta
– volume: 375
  start-page: 1216
  issue: 13
  year: 2016
  end-page: 1219
  article-title: Predicting the future – big data, machine learning, and clinical medicine
  publication-title: N Engl J Med
– volume: 12
  start-page: 633
  issue: 4
  year: 2004
  end-page: 645
  article-title: Combination of BMI and waist circumference for identifying cardiovascular risk factors in whites
  publication-title: Obes Res
– volume: 73
  start-page: 3168
  issue: 24
  year: 2019
  end-page: 3209
  article-title: 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines
  publication-title: J Am Coll Cardiol
– volume: 34
  start-page: 4
  issue: 1
  year: 2019
  end-page: 28
  article-title: The Joint Task Force for Guideline on the assessment and management of cardiovascular risk in China. Guideline on the assessment and management of cardiovascular risk in China
  publication-title: Chin Circulat J
– volume: 12
  issue: 4
  year: 2017
  article-title: Can machine‐learning improve cardiovascular risk prediction using routine clinical data?
  publication-title: PLoS One
– volume: 9
  start-page: 329
  year: 2017
  article-title: Random forest algorithm for the classification of neuroimaging data in Alzheimer's disease: a systematic review
  publication-title: Front Aging Neurosci
– volume: 25
  start-page: 436
  issue: 5
  year: 2015
  end-page: 442
  article-title: Prevention of cardiovascular disease
  publication-title: Trends Cardiovasc Med
– volume: 5
  start-page: 981
  issue: 3
  year: 2013
  end-page: 1001
  article-title: Hypertriglyceridemia
  publication-title: Nutrients
– volume: 19
  start-page: 886
  issue: 1
  year: 2019
  article-title: A large cohort study identifying a novel prognosis prediction model for lung adenocarcinoma through machine learning strategies
  publication-title: BMC Cancer
– volume: 53
  start-page: 626
  issue: 5
  year: 2017
  end-page: 631
  article-title: Diastolic blood pressure is a risk factor for peri‐procedural stroke following carotid endarterectomy in asymptomatic patients
  publication-title: Eur J Vasc Endovasc Surg
– volume: 117
  start-page: 743
  issue: 6
  year: 2008
  end-page: 753
  article-title: General cardiovascular risk profile for use in primary care: the Framingham Heart Study
  publication-title: Circulation
– volume: 12
  start-page: 171
  year: 2016
  end-page: 183
  article-title: Triglyceride‐rich lipoproteins as a causal factor for cardiovascular disease
  publication-title: Vasc Health Risk Manage
– volume: 594
  start-page: 2061
  issue: 8
  year: 2016
  end-page: 2073
  article-title: Ageing, metabolism and cardiovascular disease
  publication-title: J Physiol
– volume: 6
  start-page: 183
  issue: 4
  year: 2016
  article-title: Vascular aging: implications for cardiovascular disease and therapy
  publication-title: Transl Med
– volume: 5
  start-page: 637
  issue: 10
  year: 2008
  end-page: 648
  article-title: Vascular aging: insights from studies on cellular senescence, stem cell aging, and progeroid syndromes
  publication-title: Nat Clin Pract Cardiovasc Med
– volume: 135
  start-page: e146
  issue: 10
  year: 2017
  end-page: e603
  article-title: Heart disease and stroke statistics‐2017 update: a report from the American heart association
  publication-title: Circulation
– volume: 20
  start-page: 75
  issue: 1
  year: 2017
  end-page: 80
  article-title: Field evaluation of a random forest activity classifier for wrist‐worn accelerometer data
  publication-title: J Sci Med Sport
– volume: 115
  start-page: 450
  issue: 4
  year: 2007
  end-page: 458
  article-title: Triglycerides and the risk of coronary heart disease: 10,158 incident cases among 262,525 participants in 29 Western prospective studies
  publication-title: Circulation
– volume: 35
  start-page: 352
  issue: 5–6
  year: 2002
  end-page: 359
  article-title: Logistic regression and artificial neural network classification models: a methodology review
  publication-title: J Biomed Inform
– volume: 335
  start-page: 765
  issue: 8692
  year: 1990
  end-page: 774
  article-title: Blood pressure, stroke, and coronary heart disease. Part 1, prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias
  publication-title: Lancet
– volume: 162
  start-page: 1867
  issue: 16
  year: 2002
  end-page: 1872
  article-title: Overweight and obesity as determinants of cardiovascular risk: the Framingham experience
  publication-title: Arch Intern Med
– volume: 13
  start-page: 367
  issue: 2
  year: 2017
  end-page: 380
  article-title: Cardio‐oncology related to heart failure: common risk factors between cancer and cardiovascular disease
  publication-title: Heart Fail Clin
– volume: 129
  start-page: S49
  issue: 25 Suppl 2
  year: 2014
  end-page: S73
  article-title: 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines
  publication-title: Circulation
– volume: 134
  start-page: 1430
  issue: 19
  year: 2016
  end-page: 1440
  article-title: Predicting the 10‐year risks of atherosclerotic cardiovascular disease in Chinese population: the China‐PAR project (prediction for ASCVD risk in China)
  publication-title: Circulation
– volume: 24
  start-page: 987
  issue: 11
  year: 2003
  end-page: 1003
  article-title: Estimation of ten‐year risk of fatal cardiovascular disease in Europe: the SCORE project
  publication-title: Eur Heart J
– volume: 340
  start-page: c2442
  year: 2010
  article-title: An independent and external validation of QRISK2 cardiovascular disease risk score: a prospective open cohort study
  publication-title: BMJ
– volume: 47
  start-page: 31
  issue: 1
  year: 2017
  end-page: 39
  article-title: Random forest
  publication-title: J Insur Med
– volume: 51
  start-page: 724
  issue: 7
  year: 2008
  end-page: 730
  article-title: Impact of triglyceride levels beyond low‐density lipoprotein cholesterol after acute coronary syndrome in the PROVE IT‐TIMI 22 trial
  publication-title: J Am Coll Cardiol
– volume: 48
  start-page: 338
  issue: 3
  year: 2015
  end-page: 344
  article-title: Association of body mass index with cardiovascular disease biomarkers
  publication-title: Am J Prev Med
– volume: 144
  start-page: 884
  issue: 12
  year: 2006
  end-page: 893
  article-title: Dogma disputed: can aggressively lowering blood pressure in hypertensive patients with coronary artery disease be dangerous?
  publication-title: Ann Intern Med
– volume: 341
  start-page: c6624
  year: 2010
  article-title: Derivation, validation, and evaluation of a new QRISK model to estimate lifetime risk of cardiovascular disease: cohort study using QResearch database
  publication-title: BMJ
– volume: 125
  start-page: 1748
  issue: 14
  year: 2012
  end-page: 1756
  article-title: Comparison of the Framingham and Reynolds risk scores for global cardiovascular risk prediction in the multiethnic Women's Health Initiative
  publication-title: Circulation
– volume: 28
  start-page: 242
  issue: 4
  year: 2010
  end-page: 248
  article-title: Performance of the Framingham and SCORE cardiovascular risk prediction functions in a non‐diabetic population of a Spanish health care centre: a validation study
  publication-title: Scand J Prim Health Care
– volume: 5
  start-page: 31
  issue: 1
  year: 2013
  article-title: Chronic inflammation role in the obesity‐diabetes association: a case‐cohort study
  publication-title: Diabetol Metab Syndr
– volume: 123
  start-page: e18
  issue: 4
  year: 2011
  end-page: e209
  article-title: Heart disease and stroke statistics–2011 update: a report from the American Heart Association
  publication-title: Circulation
– volume: 5
  start-page: 13025
  year: 2015
  article-title: Pathway analysis of body mass index genome‐wide association study highlights risk pathways in cardiovascular disease
  publication-title: Sci Rep
– volume: 327
  start-page: 1267
  issue: 7426
  year: 2003
  article-title: Predictive accuracy of the Framingham coronary risk score in British men: prospective cohort study
  publication-title: BMJ
– volume: 88
  start-page: 222
  issue: 3
  year: 2002
  end-page: 228
  article-title: Prediction of mortality from coronary heart disease among diverse populations: is there a common predictive function?
  publication-title: Heart
– volume: 8
  start-page: 28
  issue: 1
  year: 2019
  end-page: 34
  article-title: Cardiovascular disease in type 1 diabetes
  publication-title: Cardiovasc Endocrinol Metab
– volume: 17
  start-page: 160
  issue: 1
  year: 2017
  article-title: Prevalence and treatment of atherogenic dyslipidemia in the primary prevention of cardiovascular disease in Europe: EURIKA, a cross‐sectional observational study
  publication-title: BMC Cardiovasc Disord
– volume: 45
  start-page: 1345
  issue: 11
  year: 2013
  end-page: 1352
  article-title: Common variants associated with plasma triglycerides and risk for coronary artery disease
  publication-title: Nat Genet
– ident: e_1_2_9_26_1
  doi: 10.1161/CIRCULATIONAHA.116.022367
– ident: e_1_2_9_37_1
  doi: 10.1016/j.hfc.2016.12.006
– ident: e_1_2_9_38_1
  doi: 10.1186/s12872-017-0591-5
– ident: e_1_2_9_11_1
  doi: 10.1371/journal.pone.0174944
– ident: e_1_2_9_49_1
  doi: 10.1016/j.ejvs.2017.02.004
– ident: e_1_2_9_7_1
  doi: 10.1016/S0195-668X(03)00114-3
– ident: e_1_2_9_20_1
  doi: 10.1007/s00702-012-0825-8
– ident: e_1_2_9_32_1
  doi: 10.1038/srep13025
– ident: e_1_2_9_45_1
  doi: 10.3390/nu5030981
– ident: e_1_2_9_6_1
  doi: 10.1161/CIRCULATIONAHA.107.699579
– ident: e_1_2_9_36_1
  doi: 10.1155/2012/476380
– ident: e_1_2_9_42_1
  doi: 10.1161/01.CIR.0000145615.33955.83
– ident: e_1_2_9_16_1
  doi: 10.1136/bmj.c2442
– ident: e_1_2_9_25_1
  doi: 10.1016/j.jsams.2016.06.003
– ident: e_1_2_9_40_1
  doi: 10.1016/j.jacc.2018.11.002
– ident: e_1_2_9_44_1
  doi: 10.1016/j.jacc.2007.10.038
– ident: e_1_2_9_35_1
  doi: 10.1186/1758-5996-5-31
– ident: e_1_2_9_30_1
– ident: e_1_2_9_9_1
  doi: 10.1161/01.cir.0000437741.48606.98
– ident: e_1_2_9_12_1
  doi: 10.1136/bmj.327.7426.1267
– ident: e_1_2_9_15_1
  doi: 10.1161/CIRCULATIONAHA.111.075929
– ident: e_1_2_9_23_1
  doi: 10.1161/CIR.0b013e3182009701
– ident: e_1_2_9_24_1
  doi: 10.1023/A:1010933404324
– ident: e_1_2_9_27_1
  doi: 10.4172/2161-1025.1000183
– ident: e_1_2_9_33_1
  doi: 10.1001/archinte.162.16.1867
– ident: e_1_2_9_31_1
  doi: 10.1038/oby.2004.73
– volume: 96
  start-page: 760
  issue: 10
  year: 2018
  ident: e_1_2_9_3_1
  article-title: Profile and evolution of the Global Burden of Morbidity in the Maghreb (Tunisia, Morocco, Algeria). The Triple burden of morbidity
  publication-title: Tunis Med
– ident: e_1_2_9_28_1
  doi: 10.1038/ncpcardio1324
– ident: e_1_2_9_8_1
  doi: 10.1136/bmj.c6624
– ident: e_1_2_9_41_1
  doi: 10.1016/j.cca.2014.01.015
– ident: e_1_2_9_10_1
  doi: 10.1056/NEJMp1606181
– ident: e_1_2_9_13_1
  doi: 10.1136/heart.88.3.222
– ident: e_1_2_9_46_1
  doi: 10.1038/ng.2795
– ident: e_1_2_9_22_1
  doi: 10.1186/s12885-019-6101-7
– ident: e_1_2_9_14_1
  doi: 10.3109/02813432.2010.518407
– ident: e_1_2_9_19_1
  doi: 10.17849/insm-47-01-31-39.1
– ident: e_1_2_9_43_1
  doi: 10.1161/CIRCULATIONAHA.106.637793
– ident: e_1_2_9_50_1
  doi: 10.1016/0140-6736(90)90878-9
– ident: e_1_2_9_2_1
  doi: 10.1161/CIR.0000000000000485
– ident: e_1_2_9_18_1
  doi: 10.1016/S1532-0464(03)00034-0
– ident: e_1_2_9_47_1
  doi: 10.2147/VHRM.S104369
– ident: e_1_2_9_21_1
  doi: 10.3389/fnagi.2017.00329
– ident: e_1_2_9_48_1
  doi: 10.7326/0003-4819-144-12-200606200-00005
– ident: e_1_2_9_17_1
  doi: 10.1097/XCE.0000000000000167
– volume: 34
  start-page: 4
  issue: 1
  year: 2019
  ident: e_1_2_9_4_1
  article-title: The Joint Task Force for Guideline on the assessment and management of cardiovascular risk in China. Guideline on the assessment and management of cardiovascular risk in China
  publication-title: Chin Circulat J
– ident: e_1_2_9_29_1
  doi: 10.1113/JP270538
– ident: e_1_2_9_39_1
  doi: 10.1016/j.jacl.2014.07.007
– ident: e_1_2_9_5_1
  doi: 10.1016/j.tcm.2014.12.005
– ident: e_1_2_9_34_1
  doi: 10.1016/j.amepre.2014.08.019
SSID ssj0008916
Score 2.3996816
Snippet Background To establish a prediction model for cardiovascular diseases (CVD) in the general population based on random forests. Methods A retrospective study...
BackgroundTo establish a prediction model for cardiovascular diseases (CVD) in the general population based on random forests.MethodsA retrospective study...
To establish a prediction model for cardiovascular diseases (CVD) in the general population based on random forests.BACKGROUNDTo establish a prediction model...
SourceID pubmedcentral
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e23421
SubjectTerms Age
Blood pressure
Body mass index
Bronchitis
Cardiovascular disease
Cardiovascular diseases
Cholesterol
Diabetes
Family medical history
Gender
High density lipoprotein
Hypertension
Laboratories
Population
prediction model
Prediction models
random forest
Regression analysis
Risk assessment
Risk factors
Software
Stroke
Tuberculosis
Variables
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7BIiEuCGgRAYqM2ksrBRLHzqOXaoVAaNWteijS3iLHdgRom2z3ceDfM-P1hi5C3CLZSawZz8sz_gbgi6nTuEpsFeaFzkKBgXKY14UJlY7Qe-WFqN0t1-Gv9PZODEZy5A_cZr6scqUTnaI2raYz8ktOicdUpIn4MfkXUtcoyq76FhqbsEXQZVTSlY26gCvKC9f61AkSauKkgyfll496rC54Ini8bpBevMzXNZL_-67O-Nzswa73Gll_yeZ92LDNAWwPfV78A-jfU3omIjP0QpleqzJlPgszY2SzDMNJnvft9IlRjeh31m-Y8vgkrK0ZWjDT_qVv4SqZa5fzEe5urv9c3Ya-fUKoBaqwUBqrUJ5NnKUmVxgnClvElc5yE2mbxLWoc5mjjUyySOkqilWkE17TfRElRY2a8BB6TdvYI2Bai1gpFFeOr2VSqrSQSNsit6IqrDEBfF3RsNQeW5xaXIzLJSoyL4nepaN3AJ-7uZMlosabs05XrCi9VM3Klz0QwHk3jPJASQ7V2HZBc9DgxhLjwACyNRZ2fyNE7fWR5uHeIWtn6MwkXAbwzTH7nfWVg6ufffd0_P5KT2CHU4juytJOoTefLuwn9GPm1ZnbrM8d_vLl
  priority: 102
  providerName: ProQuest
Title Prediction for cardiovascular diseases based on laboratory data: An analysis of random forest model
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcla.23421
https://www.proquest.com/docview/2446664634
https://www.proquest.com/docview/2428415871
https://pubmed.ncbi.nlm.nih.gov/PMC7521325
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS90wFD84hbEX576wm14y5ouDXts0adLhy_WiiEy5yIT7MkqapOim7bgfD9tfv5O0t9crMpgvIdCTNk1yPpJzzi8Ae6ZM4yKxRSgzLUKGG-VQlpkJlY7QeqUZK32W6_lFenrFzsZ8vAaHi1yYBh-iO3BznOHltWNwVUwPlqChP_St6tOE-SxyF6zlLKLLJXaUzPy9p56LUAwnHTYpPVg2XdVGSxPzYYDkfcPVa56Tl_B90ecm4ORnfz4r-vrPAzjHp_7UFmy2JikZNGvoFazZ6jU8P2-d7m9Ajyau7maQoIlL9EoIK2ldPFPiFKIhSNQurHrym7gA1C9kUBHVgp-QuiSoHk19596Fo0D8XTxv4erk-NvwNGzvZgg1Q_kYcmMVCgsTi9RIhZtQZrO40EKaSNskLlkpuUQFnIhI6SKKVaQTWrpkFMVZiWL2HaxXdWW3gWjNYqVQFlBsJjhXacZx7jJpWZFZYwLYX8xRrlvgcnd_xm3eQC7T3I1a7kctgE8d7a8GruNRqp3FVOcty05z6jzbKUsTFsDH7jEym_OgqMrWc0eD2jzmuMkMQKwske5rDq579Ul1c-1huwVaSgnlAXz2K-Af_cvPhl8Hvvb-f4g_wAvqTgN8BNwOrM8mc7uLJtOs6MEzykZYirHAUg7jHmwcHV-MLnv-EKLnWecvQG8ZTQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1da9RAcChXUF_ET4xWXVEfFGKzX_kQRM7acm3vjiIt9C3d7G5opSb1rkX6p_yNzu5tUk-kb30L7CRZ5nt2ZmcA3pg6pRW3VZwXOosFBspxXhcmVjpB75UVova3XCfTdHQgdg7l4Qr87u7CuLLKTid6RW1a7c7I15lLPKYi5eLz2c_YTY1y2dVuhMaCLXbt5S8M2eaftr8ifd8ytrW5vzGKw1SBWAuU7Fgaq5DNDc1SkysMn4QtaKWz3CTaclqLOpc5mg6eJUpXCVWJ5qx21yiUFDV1UyJQ5a8KjqHMAFa_bE73vvW6Py_8sFUvuqj7ed8Qla1_16fqA-OC0WUTeOXX_luV-be37M3d1j24G_xUMlww1n1Ysc0DuDUJmfiHoPdm7tmRlaDfS_RSXSsJeZ85cVbSEAQK3NbOLomrSv1Ihg1RoSMKaWuCNtO0P9y3cJfED-h5BAc3gtrHMGjaxj4BorWgSqGCYPhaJqVKC4m4LXIrqsIaE8G7DoelDt3M3VCN03LRh5mVDt-lx3cEr3vYs0UPj_9CrXWkKIMcz8srrovgVb-MEujSKqqx7YWDQRNPJUaeEWRLJOz_5np4L680J8e-l3eG7hNnMoL3ntjX7K_c2RgP_dPT63f6Em6P9ifjcrw93X0Gd5g7IPBFcWswOJ9d2OfoRZ1XLwLrEji6aWn5AwlkMKM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1da9RAcCgVii_iJ6a2uqI-KMTLbnbzIYgcrUe_6YOFe4ub_UClJu1di_Sv-euc2UtST6RvfQvsJFnme3ZmZwBeW5_xOnV1XJQmjyUGynHhSxtrk6D3Kkrpwy3Xw6Ns50TuTdV0BX73d2GorLLXiUFR29bQGflIUOIxk1kqR74rizjennw6O49pghRlWvtxGgsW2XdXvzB8m3_c3UZavxFi8vnL1k7cTRiIjUQpj5V1Glne8jyzhcZQSrqS1yYvbGJcyr30hSrQjKR5ok2dcJ2YVHi6UqGV9JwmRqD6v5OnipOM5dMh2EuKMoxdDUKMViAdWqOK0Q9zqt-LVAq-bAyvPdx_6zP_9puD4Zvch3udx8rGCxZ7ACuueQhrh11O_hGY4xk9E4EZesDMLFW4si4DNGdkLy1DoI7v2tkVo_rUD2zcMN31RmGtZ2g9bfuTvoW7ZGFUz2M4uRXEPoHVpm3cU2DGSK41qgqBr-VK6axUiNuycLIunbURvO1xWJmurzmN1zitFh2ZRUX4rgK-I3g1wJ4tunn8F2qjJ0XVSfS8uua_CF4OyyiLlGDRjWsvCQaNPVcYg0aQL5Fw-Bt1815eab5_C129c3SkUqEieBeIfcP-qr2tg3F4Wr95py9gDWWkOtg92n8GdwWdFITquA1YvZhduk10py7q54FvGXy9bUH5A9RgM3M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+for+cardiovascular+diseases+based+on+laboratory+data%3A+An+analysis+of+random+forest+model&rft.jtitle=Journal+of+clinical+laboratory+analysis&rft.au=Su%2C+Xi&rft.au=Xu%2C+Yongyong&rft.au=Tan%2C+Zhijun&rft.au=Wang%2C+Xia&rft.date=2020-09-01&rft.issn=1098-2825&rft.eissn=1098-2825&rft.volume=34&rft.issue=9&rft.spage=e23421&rft_id=info:doi/10.1002%2Fjcla.23421&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-8013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-8013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-8013&client=summon