Prediction for cardiovascular diseases based on laboratory data: An analysis of random forest model
Background To establish a prediction model for cardiovascular diseases (CVD) in the general population based on random forests. Methods A retrospective study involving 498 subjects was conducted in Xi'an Medical University between 2011 and 2018. The random forest algorithm was used to screen ou...
Saved in:
Published in | Journal of clinical laboratory analysis Vol. 34; no. 9; pp. e23421 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
John Wiley & Sons, Inc
01.09.2020
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background
To establish a prediction model for cardiovascular diseases (CVD) in the general population based on random forests.
Methods
A retrospective study involving 498 subjects was conducted in Xi'an Medical University between 2011 and 2018. The random forest algorithm was used to screen out the variables that greatly affected the CVD prediction and to establish a prediction model. The important variables were included in the multifactorial logistic regression analysis. The area under the curve (AUC) was compared between logistic regression model and random forest model.
Results
The random forest model revealed the variables, including the age, body mass index (BMI), fasting blood glucose (FBG), diastolic blood pressure (DBP), triglyceride (TG), systolic blood pressure (SBP), total cholesterol (TC), waist circumference, and high‐density lipoprotein‐cholesterol (HDL‐C), were more significant for CVD prediction; the AUC was 0.802 in CVD prediction. Multifactorial logistic regression analysis indicated that the risk factors for CVD included the age [odds ratio (OR): 1.14, 95% confidence intervals (CI): 1.10‐1.17, P < .001], BMI (OR: 1.13, 95% CI: 1.06‐1.20, P < .001), TG (OR: 1.11, 95% CI: 1.02‐1.22, P = .023), and DBP (OR: 1.04, 95% CI: 1.02‐1.06, P = .001); the AUC was 0.843 in CVD prediction. The established logistic regression prediction model was Logit P = Log[P/(1 − P)] = −11.47 + 0.13 × age + 0.12 × BMI + 0.11 × TG + 0.04 × DBP; P = 1/[1 + exp(−Logit P)]. People were prone to develop CVD at the time of P > .51.
Conclusions
A prediction model for CVD is developed in the general population based on random forests, which provides a simple tool for the early prediction of CVD. |
---|---|
AbstractList | To establish a prediction model for cardiovascular diseases (CVD) in the general population based on random forests.BACKGROUNDTo establish a prediction model for cardiovascular diseases (CVD) in the general population based on random forests.A retrospective study involving 498 subjects was conducted in Xi'an Medical University between 2011 and 2018. The random forest algorithm was used to screen out the variables that greatly affected the CVD prediction and to establish a prediction model. The important variables were included in the multifactorial logistic regression analysis. The area under the curve (AUC) was compared between logistic regression model and random forest model.METHODSA retrospective study involving 498 subjects was conducted in Xi'an Medical University between 2011 and 2018. The random forest algorithm was used to screen out the variables that greatly affected the CVD prediction and to establish a prediction model. The important variables were included in the multifactorial logistic regression analysis. The area under the curve (AUC) was compared between logistic regression model and random forest model.The random forest model revealed the variables, including the age, body mass index (BMI), fasting blood glucose (FBG), diastolic blood pressure (DBP), triglyceride (TG), systolic blood pressure (SBP), total cholesterol (TC), waist circumference, and high-density lipoprotein-cholesterol (HDL-C), were more significant for CVD prediction; the AUC was 0.802 in CVD prediction. Multifactorial logistic regression analysis indicated that the risk factors for CVD included the age [odds ratio (OR): 1.14, 95% confidence intervals (CI): 1.10-1.17, P < .001], BMI (OR: 1.13, 95% CI: 1.06-1.20, P < .001), TG (OR: 1.11, 95% CI: 1.02-1.22, P = .023), and DBP (OR: 1.04, 95% CI: 1.02-1.06, P = .001); the AUC was 0.843 in CVD prediction. The established logistic regression prediction model was Logit P = Log[P/(1 - P)] = -11.47 + 0.13 × age + 0.12 × BMI + 0.11 × TG + 0.04 × DBP; P = 1/[1 + exp(-Logit P)]. People were prone to develop CVD at the time of P > .51.RESULTSThe random forest model revealed the variables, including the age, body mass index (BMI), fasting blood glucose (FBG), diastolic blood pressure (DBP), triglyceride (TG), systolic blood pressure (SBP), total cholesterol (TC), waist circumference, and high-density lipoprotein-cholesterol (HDL-C), were more significant for CVD prediction; the AUC was 0.802 in CVD prediction. Multifactorial logistic regression analysis indicated that the risk factors for CVD included the age [odds ratio (OR): 1.14, 95% confidence intervals (CI): 1.10-1.17, P < .001], BMI (OR: 1.13, 95% CI: 1.06-1.20, P < .001), TG (OR: 1.11, 95% CI: 1.02-1.22, P = .023), and DBP (OR: 1.04, 95% CI: 1.02-1.06, P = .001); the AUC was 0.843 in CVD prediction. The established logistic regression prediction model was Logit P = Log[P/(1 - P)] = -11.47 + 0.13 × age + 0.12 × BMI + 0.11 × TG + 0.04 × DBP; P = 1/[1 + exp(-Logit P)]. People were prone to develop CVD at the time of P > .51.A prediction model for CVD is developed in the general population based on random forests, which provides a simple tool for the early prediction of CVD.CONCLUSIONSA prediction model for CVD is developed in the general population based on random forests, which provides a simple tool for the early prediction of CVD. BackgroundTo establish a prediction model for cardiovascular diseases (CVD) in the general population based on random forests.MethodsA retrospective study involving 498 subjects was conducted in Xi'an Medical University between 2011 and 2018. The random forest algorithm was used to screen out the variables that greatly affected the CVD prediction and to establish a prediction model. The important variables were included in the multifactorial logistic regression analysis. The area under the curve (AUC) was compared between logistic regression model and random forest model.ResultsThe random forest model revealed the variables, including the age, body mass index (BMI), fasting blood glucose (FBG), diastolic blood pressure (DBP), triglyceride (TG), systolic blood pressure (SBP), total cholesterol (TC), waist circumference, and high‐density lipoprotein‐cholesterol (HDL‐C), were more significant for CVD prediction; the AUC was 0.802 in CVD prediction. Multifactorial logistic regression analysis indicated that the risk factors for CVD included the age [odds ratio (OR): 1.14, 95% confidence intervals (CI): 1.10‐1.17, P < .001], BMI (OR: 1.13, 95% CI: 1.06‐1.20, P < .001), TG (OR: 1.11, 95% CI: 1.02‐1.22, P = .023), and DBP (OR: 1.04, 95% CI: 1.02‐1.06, P = .001); the AUC was 0.843 in CVD prediction. The established logistic regression prediction model was Logit P = Log[P/(1 − P)] = −11.47 + 0.13 × age + 0.12 × BMI + 0.11 × TG + 0.04 × DBP; P = 1/[1 + exp(−Logit P)]. People were prone to develop CVD at the time of P > .51.ConclusionsA prediction model for CVD is developed in the general population based on random forests, which provides a simple tool for the early prediction of CVD. Background To establish a prediction model for cardiovascular diseases (CVD) in the general population based on random forests. Methods A retrospective study involving 498 subjects was conducted in Xi'an Medical University between 2011 and 2018. The random forest algorithm was used to screen out the variables that greatly affected the CVD prediction and to establish a prediction model. The important variables were included in the multifactorial logistic regression analysis. The area under the curve (AUC) was compared between logistic regression model and random forest model. Results The random forest model revealed the variables, including the age, body mass index (BMI), fasting blood glucose (FBG), diastolic blood pressure (DBP), triglyceride (TG), systolic blood pressure (SBP), total cholesterol (TC), waist circumference, and high‐density lipoprotein‐cholesterol (HDL‐C), were more significant for CVD prediction; the AUC was 0.802 in CVD prediction. Multifactorial logistic regression analysis indicated that the risk factors for CVD included the age [odds ratio (OR): 1.14, 95% confidence intervals (CI): 1.10‐1.17, P < .001], BMI (OR: 1.13, 95% CI: 1.06‐1.20, P < .001), TG (OR: 1.11, 95% CI: 1.02‐1.22, P = .023), and DBP (OR: 1.04, 95% CI: 1.02‐1.06, P = .001); the AUC was 0.843 in CVD prediction. The established logistic regression prediction model was Logit P = Log[P/(1 − P)] = −11.47 + 0.13 × age + 0.12 × BMI + 0.11 × TG + 0.04 × DBP; P = 1/[1 + exp(−Logit P)]. People were prone to develop CVD at the time of P > .51. Conclusions A prediction model for CVD is developed in the general population based on random forests, which provides a simple tool for the early prediction of CVD. |
Author | Su, Xi Yang, Peng Su, Yani Xu, Yongyong Wang, Xia Shang, Lei Tan, Zhijun Qin, Sijia Jiang, Yangyang |
AuthorAffiliation | 1 Department of Health Statistics Fourth Military Medical University Xi’an China 2 School of Health Management Xi’an Medical University Xi’an China 3 Data Center Shaanxi Provincial People’s Hospital Xi’an China 4 School of Stomatology Xi’an Medical University Xi’an China |
AuthorAffiliation_xml | – name: 1 Department of Health Statistics Fourth Military Medical University Xi’an China – name: 2 School of Health Management Xi’an Medical University Xi’an China – name: 4 School of Stomatology Xi’an Medical University Xi’an China – name: 3 Data Center Shaanxi Provincial People’s Hospital Xi’an China |
Author_xml | – sequence: 1 givenname: Xi surname: Su fullname: Su, Xi organization: Xi’an Medical University – sequence: 2 givenname: Yongyong surname: Xu fullname: Xu, Yongyong organization: Fourth Military Medical University – sequence: 3 givenname: Zhijun surname: Tan fullname: Tan, Zhijun organization: Fourth Military Medical University – sequence: 4 givenname: Xia surname: Wang fullname: Wang, Xia organization: Fourth Military Medical University – sequence: 5 givenname: Peng surname: Yang fullname: Yang, Peng organization: Fourth Military Medical University – sequence: 6 givenname: Yani surname: Su fullname: Su, Yani organization: Shaanxi Provincial People’s Hospital – sequence: 7 givenname: Yangyang surname: Jiang fullname: Jiang, Yangyang organization: Xi’an Medical University – sequence: 8 givenname: Sijia surname: Qin fullname: Qin, Sijia organization: Xi’an Medical University – sequence: 9 givenname: Lei orcidid: 0000-0002-3330-5391 surname: Shang fullname: Shang, Lei email: sxlight@outlook.com organization: Fourth Military Medical University |
BookMark | eNp9kU9v1DAQxS1URLeFC5_AEheElOJ_SRwOSKsVLaCV4ABna2JPwCsnLnZStN8ehy0HKsRl5jC_92Y074KcTXFCQp5zdsUZE68PNsCVkErwR2TDWacroUV9RjZM67bSjMtzcpHzgTGmO948IedStKLWstsQ-zmh83b2caJDTNRCcj7eQbZLgESdzwgZM-1LdbRAAfqYYI7pSB3M8IZuJwoThGP2mcaBJphcHFcvzDMdo8PwlDweIGR8dt8vydfrd19276v9p5sPu-2-sqrjvKodQsuk423jNCgmFHa8t612zKLkgxp0rS2ibBnYnnFgVoqhEUpArQZey0vy9uR7u_QjOovTnCCY2-RHSEcTwZu_J5P_br7FO9PWgkuxGry8N0jxx1LuN6PPFkOACeOSTVmlFa91ywv64gF6iEsqf1gp1TSNaqQqFDtRNsWcEw7G-hnWZ5f9PhjOzJqgWRM0vxMsklcPJH_u_yfMT_BPH_D4H9J83O23J80vdgStxg |
CitedBy_id | crossref_primary_10_1186_s12906_023_04249_5 crossref_primary_10_3389_fpubh_2023_1213926 crossref_primary_10_2147_IJGM_S338389 crossref_primary_10_1515_cclm_2023_1037 crossref_primary_10_1016_j_engappai_2022_105352 crossref_primary_10_3389_fcvm_2022_994483 crossref_primary_10_1038_s41598_024_64463_0 crossref_primary_10_1007_s40292_022_00523_8 crossref_primary_10_1016_j_compbiomed_2021_105204 crossref_primary_10_1186_s12916_024_03273_7 crossref_primary_10_3390_ijerph191710877 crossref_primary_10_1186_s12889_024_21081_9 crossref_primary_10_1016_j_ceh_2024_12_003 crossref_primary_10_3103_S0027134922060042 crossref_primary_10_1155_2021_5047501 crossref_primary_10_3389_fimmu_2024_1367235 crossref_primary_10_3389_fmed_2023_1292761 crossref_primary_10_2147_IJGM_S329005 crossref_primary_10_1016_j_imu_2023_101316 crossref_primary_10_2196_68066 crossref_primary_10_4258_hir_2023_29_3_228 crossref_primary_10_1016_j_compbiomed_2022_106188 crossref_primary_10_12998_wjcc_v9_i29_8729 crossref_primary_10_1016_j_ejmp_2021_01_071 crossref_primary_10_1515_med_2022_0526 crossref_primary_10_3389_fcvm_2023_1224795 |
Cites_doi | 10.1161/CIRCULATIONAHA.116.022367 10.1016/j.hfc.2016.12.006 10.1186/s12872-017-0591-5 10.1371/journal.pone.0174944 10.1016/j.ejvs.2017.02.004 10.1016/S0195-668X(03)00114-3 10.1007/s00702-012-0825-8 10.1038/srep13025 10.3390/nu5030981 10.1161/CIRCULATIONAHA.107.699579 10.1155/2012/476380 10.1161/01.CIR.0000145615.33955.83 10.1136/bmj.c2442 10.1016/j.jsams.2016.06.003 10.1016/j.jacc.2018.11.002 10.1016/j.jacc.2007.10.038 10.1186/1758-5996-5-31 10.1161/01.cir.0000437741.48606.98 10.1136/bmj.327.7426.1267 10.1161/CIRCULATIONAHA.111.075929 10.1161/CIR.0b013e3182009701 10.1023/A:1010933404324 10.4172/2161-1025.1000183 10.1001/archinte.162.16.1867 10.1038/oby.2004.73 10.1038/ncpcardio1324 10.1136/bmj.c6624 10.1016/j.cca.2014.01.015 10.1056/NEJMp1606181 10.1136/heart.88.3.222 10.1038/ng.2795 10.1186/s12885-019-6101-7 10.3109/02813432.2010.518407 10.17849/insm-47-01-31-39.1 10.1161/CIRCULATIONAHA.106.637793 10.1016/0140-6736(90)90878-9 10.1161/CIR.0000000000000485 10.1016/S1532-0464(03)00034-0 10.2147/VHRM.S104369 10.3389/fnagi.2017.00329 10.7326/0003-4819-144-12-200606200-00005 10.1097/XCE.0000000000000167 10.1113/JP270538 10.1016/j.jacl.2014.07.007 10.1016/j.tcm.2014.12.005 10.1016/j.amepre.2014.08.019 |
ContentType | Journal Article |
Copyright | 2020 The Authors. published by Wiley Periodicals LLC 2020. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 The Authors. Journal of Clinical Laboratory Analysis published by Wiley Periodicals LLC. |
Copyright_xml | – notice: 2020 The Authors. published by Wiley Periodicals LLC – notice: 2020. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 The Authors. Journal of Clinical Laboratory Analysis published by Wiley Periodicals LLC. |
DBID | 24P AAYXX CITATION 3V. 7QP 7T5 7U9 7X7 7XB 8C1 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI 7X8 5PM |
DOI | 10.1002/jcla.23421 |
DatabaseName | Wiley Online Library Open Access CrossRef ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Immunology Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Public Health Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Public Health Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Immunology Abstracts ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | SU et al |
EISSN | 1098-2825 |
EndPage | n/a |
ExternalDocumentID | PMC7521325 10_1002_jcla_23421 JCLA23421 |
Genre | article |
GrantInformation_xml | – fundername: Special Scientific Research Program of Department of Education of Shaanxi Province funderid: 19JK0770 – fundername: Special Scientific Research Program of Department of Education of Shaanxi Province grantid: 19JK0770 |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 6PF 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8C1 8FI 8FJ 8UM 930 A01 A03 A8Z AAESR AAEVG AAHHS AANHP AAONW AAWTL AAZKR ABCQN ABEML ABIJN ABPVW ABUWG ACBWZ ACCFJ ACCMX ACGFS ACMXC ACPRK ACRPL ACSCC ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADNMO ADPDF ADZMN AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFKRA AFPWT AFZJQ AHMBA AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AVUZU AVWKF AZBYB AZFZN AZVAB BAFTC BBNVY BCNDV BDRZF BENPR BFHJK BHBCM BHPHI BMXJE BROTX BRXPI BY8 CCPQU CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DU5 DUUFO EBD EBS EJD EMOBN F00 F01 F04 F1Z F5P FEDTE FUBAC FYUFA G-S G.N GNP GODZA GROUPED_DOAJ H.X HBH HCIFZ HF~ HHY HMCUK HVGLF HYE HZ~ IAO IHR ITC IX1 J0M JPC KQQ LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 M65 M7P MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P2Z P4B P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RPM RWI RX1 SAMSI SUPJJ SV3 TEORI TWZ UB1 UKHRP V2E W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WOHZO WQJ WRC WUP WVDHM WXI WXSBR XG1 XPP XV2 ~IA ~WT AAYXX AGQPQ CITATION PHGZM PHGZT 3V. 7QP 7T5 7U9 7XB 8FE 8FH 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO GNUQQ H94 K9. LK8 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI 7X8 5PM |
ID | FETCH-LOGICAL-c4911-5dea703d176d8a4024e91bc78d0ce31f4f858cee370acb01a0c32f6242a54f153 |
IEDL.DBID | DR2 |
ISSN | 0887-8013 1098-2825 |
IngestDate | Thu Aug 21 18:21:34 EDT 2025 Thu Jul 10 19:55:09 EDT 2025 Wed Aug 13 07:57:49 EDT 2025 Tue Jul 01 02:27:43 EDT 2025 Thu Apr 24 22:52:25 EDT 2025 Wed Jan 22 16:33:45 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | Attribution-NonCommercial This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4911-5dea703d176d8a4024e91bc78d0ce31f4f858cee370acb01a0c32f6242a54f153 |
Notes | Funding information This study was supported by Special Scientific Research Program of Department of Education of Shaanxi Province, China (Grant No. 19JK0770). ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3330-5391 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcla.23421 |
PMID | 32725839 |
PQID | 2446664634 |
PQPubID | 105667 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7521325 proquest_miscellaneous_2428415871 proquest_journals_2446664634 crossref_citationtrail_10_1002_jcla_23421 crossref_primary_10_1002_jcla_23421 wiley_primary_10_1002_jcla_23421_JCLA23421 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2020 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: September 2020 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Hoboken |
PublicationTitle | Journal of clinical laboratory analysis |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
References | 2019; 8 2017; 20 2015; 5 2012; 2012 2019; 73 2017; 47 2013; 45 2019; 34 2002; 35 2010; 341 2019; 19 2010; 340 2008; 5 2012; 125 2001; 45 2008; 51 2017; 135 2013; 5 2017; 9 2014; 431 2016; 12 2014; 129 2007; 115 2016; 6 2015; 48 2004; 110 2017; 53 2015; 25 2003; 327 1990; 335 2002; 162 2017; 17 2010; 28 2004; 12 2017; 13 2017; 12 2002; 88 2003; 24 2016; 134 2016; 375 2008; 117 2016; 594 2018; 96 2014; 8 2011; 123 2012; 119 2006; 144 (e_1_2_9_4_1) 2019; 34 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 Ben Abdelaziz A (e_1_2_9_3_1) 2018; 96 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 45 start-page: 5 issue: 1 year: 2001 end-page: 32 article-title: Random forests publication-title: Mach Learn – volume: 8 start-page: 473 issue: 5 year: 2014 end-page: 888 article-title: National lipid association recommendations for patient‐centered management of dyslipidemia: part 1 ‐executive summary publication-title: J Clin Lipidol – volume: 119 start-page: 1449 issue: 11 year: 2012 end-page: 1453 article-title: Indicators for elevated risk factors for alcohol‐withdrawal seizures: an analysis using a random forest algorithm publication-title: J Neural Transm – volume: 96 start-page: 760 issue: 10–11 year: 2018 end-page: 773 article-title: Profile and evolution of the Global Burden of Morbidity in the Maghreb (Tunisia, Morocco, Algeria). The Triple burden of morbidity publication-title: Tunis Med – volume: 110 start-page: 2678 issue: 17 year: 2004 end-page: 2686 article-title: Serum triglycerides as a risk factor for cardiovascular diseases in the Asia‐Pacific region publication-title: Circulation – volume: 2012 start-page: 476380 year: 2012 article-title: Inflammation as a link between obesity and metabolic syndrome publication-title: J Nutr Metab – volume: 431 start-page: 131 year: 2014 end-page: 142 article-title: Postprandial hypertriglyceridemia as a coronary risk factor publication-title: Clin Chim Acta – volume: 375 start-page: 1216 issue: 13 year: 2016 end-page: 1219 article-title: Predicting the future – big data, machine learning, and clinical medicine publication-title: N Engl J Med – volume: 12 start-page: 633 issue: 4 year: 2004 end-page: 645 article-title: Combination of BMI and waist circumference for identifying cardiovascular risk factors in whites publication-title: Obes Res – volume: 73 start-page: 3168 issue: 24 year: 2019 end-page: 3209 article-title: 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines publication-title: J Am Coll Cardiol – volume: 34 start-page: 4 issue: 1 year: 2019 end-page: 28 article-title: The Joint Task Force for Guideline on the assessment and management of cardiovascular risk in China. Guideline on the assessment and management of cardiovascular risk in China publication-title: Chin Circulat J – volume: 12 issue: 4 year: 2017 article-title: Can machine‐learning improve cardiovascular risk prediction using routine clinical data? publication-title: PLoS One – volume: 9 start-page: 329 year: 2017 article-title: Random forest algorithm for the classification of neuroimaging data in Alzheimer's disease: a systematic review publication-title: Front Aging Neurosci – volume: 25 start-page: 436 issue: 5 year: 2015 end-page: 442 article-title: Prevention of cardiovascular disease publication-title: Trends Cardiovasc Med – volume: 5 start-page: 981 issue: 3 year: 2013 end-page: 1001 article-title: Hypertriglyceridemia publication-title: Nutrients – volume: 19 start-page: 886 issue: 1 year: 2019 article-title: A large cohort study identifying a novel prognosis prediction model for lung adenocarcinoma through machine learning strategies publication-title: BMC Cancer – volume: 53 start-page: 626 issue: 5 year: 2017 end-page: 631 article-title: Diastolic blood pressure is a risk factor for peri‐procedural stroke following carotid endarterectomy in asymptomatic patients publication-title: Eur J Vasc Endovasc Surg – volume: 117 start-page: 743 issue: 6 year: 2008 end-page: 753 article-title: General cardiovascular risk profile for use in primary care: the Framingham Heart Study publication-title: Circulation – volume: 12 start-page: 171 year: 2016 end-page: 183 article-title: Triglyceride‐rich lipoproteins as a causal factor for cardiovascular disease publication-title: Vasc Health Risk Manage – volume: 594 start-page: 2061 issue: 8 year: 2016 end-page: 2073 article-title: Ageing, metabolism and cardiovascular disease publication-title: J Physiol – volume: 6 start-page: 183 issue: 4 year: 2016 article-title: Vascular aging: implications for cardiovascular disease and therapy publication-title: Transl Med – volume: 5 start-page: 637 issue: 10 year: 2008 end-page: 648 article-title: Vascular aging: insights from studies on cellular senescence, stem cell aging, and progeroid syndromes publication-title: Nat Clin Pract Cardiovasc Med – volume: 135 start-page: e146 issue: 10 year: 2017 end-page: e603 article-title: Heart disease and stroke statistics‐2017 update: a report from the American heart association publication-title: Circulation – volume: 20 start-page: 75 issue: 1 year: 2017 end-page: 80 article-title: Field evaluation of a random forest activity classifier for wrist‐worn accelerometer data publication-title: J Sci Med Sport – volume: 115 start-page: 450 issue: 4 year: 2007 end-page: 458 article-title: Triglycerides and the risk of coronary heart disease: 10,158 incident cases among 262,525 participants in 29 Western prospective studies publication-title: Circulation – volume: 35 start-page: 352 issue: 5–6 year: 2002 end-page: 359 article-title: Logistic regression and artificial neural network classification models: a methodology review publication-title: J Biomed Inform – volume: 335 start-page: 765 issue: 8692 year: 1990 end-page: 774 article-title: Blood pressure, stroke, and coronary heart disease. Part 1, prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias publication-title: Lancet – volume: 162 start-page: 1867 issue: 16 year: 2002 end-page: 1872 article-title: Overweight and obesity as determinants of cardiovascular risk: the Framingham experience publication-title: Arch Intern Med – volume: 13 start-page: 367 issue: 2 year: 2017 end-page: 380 article-title: Cardio‐oncology related to heart failure: common risk factors between cancer and cardiovascular disease publication-title: Heart Fail Clin – volume: 129 start-page: S49 issue: 25 Suppl 2 year: 2014 end-page: S73 article-title: 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines publication-title: Circulation – volume: 134 start-page: 1430 issue: 19 year: 2016 end-page: 1440 article-title: Predicting the 10‐year risks of atherosclerotic cardiovascular disease in Chinese population: the China‐PAR project (prediction for ASCVD risk in China) publication-title: Circulation – volume: 24 start-page: 987 issue: 11 year: 2003 end-page: 1003 article-title: Estimation of ten‐year risk of fatal cardiovascular disease in Europe: the SCORE project publication-title: Eur Heart J – volume: 340 start-page: c2442 year: 2010 article-title: An independent and external validation of QRISK2 cardiovascular disease risk score: a prospective open cohort study publication-title: BMJ – volume: 47 start-page: 31 issue: 1 year: 2017 end-page: 39 article-title: Random forest publication-title: J Insur Med – volume: 51 start-page: 724 issue: 7 year: 2008 end-page: 730 article-title: Impact of triglyceride levels beyond low‐density lipoprotein cholesterol after acute coronary syndrome in the PROVE IT‐TIMI 22 trial publication-title: J Am Coll Cardiol – volume: 48 start-page: 338 issue: 3 year: 2015 end-page: 344 article-title: Association of body mass index with cardiovascular disease biomarkers publication-title: Am J Prev Med – volume: 144 start-page: 884 issue: 12 year: 2006 end-page: 893 article-title: Dogma disputed: can aggressively lowering blood pressure in hypertensive patients with coronary artery disease be dangerous? publication-title: Ann Intern Med – volume: 341 start-page: c6624 year: 2010 article-title: Derivation, validation, and evaluation of a new QRISK model to estimate lifetime risk of cardiovascular disease: cohort study using QResearch database publication-title: BMJ – volume: 125 start-page: 1748 issue: 14 year: 2012 end-page: 1756 article-title: Comparison of the Framingham and Reynolds risk scores for global cardiovascular risk prediction in the multiethnic Women's Health Initiative publication-title: Circulation – volume: 28 start-page: 242 issue: 4 year: 2010 end-page: 248 article-title: Performance of the Framingham and SCORE cardiovascular risk prediction functions in a non‐diabetic population of a Spanish health care centre: a validation study publication-title: Scand J Prim Health Care – volume: 5 start-page: 31 issue: 1 year: 2013 article-title: Chronic inflammation role in the obesity‐diabetes association: a case‐cohort study publication-title: Diabetol Metab Syndr – volume: 123 start-page: e18 issue: 4 year: 2011 end-page: e209 article-title: Heart disease and stroke statistics–2011 update: a report from the American Heart Association publication-title: Circulation – volume: 5 start-page: 13025 year: 2015 article-title: Pathway analysis of body mass index genome‐wide association study highlights risk pathways in cardiovascular disease publication-title: Sci Rep – volume: 327 start-page: 1267 issue: 7426 year: 2003 article-title: Predictive accuracy of the Framingham coronary risk score in British men: prospective cohort study publication-title: BMJ – volume: 88 start-page: 222 issue: 3 year: 2002 end-page: 228 article-title: Prediction of mortality from coronary heart disease among diverse populations: is there a common predictive function? publication-title: Heart – volume: 8 start-page: 28 issue: 1 year: 2019 end-page: 34 article-title: Cardiovascular disease in type 1 diabetes publication-title: Cardiovasc Endocrinol Metab – volume: 17 start-page: 160 issue: 1 year: 2017 article-title: Prevalence and treatment of atherogenic dyslipidemia in the primary prevention of cardiovascular disease in Europe: EURIKA, a cross‐sectional observational study publication-title: BMC Cardiovasc Disord – volume: 45 start-page: 1345 issue: 11 year: 2013 end-page: 1352 article-title: Common variants associated with plasma triglycerides and risk for coronary artery disease publication-title: Nat Genet – ident: e_1_2_9_26_1 doi: 10.1161/CIRCULATIONAHA.116.022367 – ident: e_1_2_9_37_1 doi: 10.1016/j.hfc.2016.12.006 – ident: e_1_2_9_38_1 doi: 10.1186/s12872-017-0591-5 – ident: e_1_2_9_11_1 doi: 10.1371/journal.pone.0174944 – ident: e_1_2_9_49_1 doi: 10.1016/j.ejvs.2017.02.004 – ident: e_1_2_9_7_1 doi: 10.1016/S0195-668X(03)00114-3 – ident: e_1_2_9_20_1 doi: 10.1007/s00702-012-0825-8 – ident: e_1_2_9_32_1 doi: 10.1038/srep13025 – ident: e_1_2_9_45_1 doi: 10.3390/nu5030981 – ident: e_1_2_9_6_1 doi: 10.1161/CIRCULATIONAHA.107.699579 – ident: e_1_2_9_36_1 doi: 10.1155/2012/476380 – ident: e_1_2_9_42_1 doi: 10.1161/01.CIR.0000145615.33955.83 – ident: e_1_2_9_16_1 doi: 10.1136/bmj.c2442 – ident: e_1_2_9_25_1 doi: 10.1016/j.jsams.2016.06.003 – ident: e_1_2_9_40_1 doi: 10.1016/j.jacc.2018.11.002 – ident: e_1_2_9_44_1 doi: 10.1016/j.jacc.2007.10.038 – ident: e_1_2_9_35_1 doi: 10.1186/1758-5996-5-31 – ident: e_1_2_9_30_1 – ident: e_1_2_9_9_1 doi: 10.1161/01.cir.0000437741.48606.98 – ident: e_1_2_9_12_1 doi: 10.1136/bmj.327.7426.1267 – ident: e_1_2_9_15_1 doi: 10.1161/CIRCULATIONAHA.111.075929 – ident: e_1_2_9_23_1 doi: 10.1161/CIR.0b013e3182009701 – ident: e_1_2_9_24_1 doi: 10.1023/A:1010933404324 – ident: e_1_2_9_27_1 doi: 10.4172/2161-1025.1000183 – ident: e_1_2_9_33_1 doi: 10.1001/archinte.162.16.1867 – ident: e_1_2_9_31_1 doi: 10.1038/oby.2004.73 – volume: 96 start-page: 760 issue: 10 year: 2018 ident: e_1_2_9_3_1 article-title: Profile and evolution of the Global Burden of Morbidity in the Maghreb (Tunisia, Morocco, Algeria). The Triple burden of morbidity publication-title: Tunis Med – ident: e_1_2_9_28_1 doi: 10.1038/ncpcardio1324 – ident: e_1_2_9_8_1 doi: 10.1136/bmj.c6624 – ident: e_1_2_9_41_1 doi: 10.1016/j.cca.2014.01.015 – ident: e_1_2_9_10_1 doi: 10.1056/NEJMp1606181 – ident: e_1_2_9_13_1 doi: 10.1136/heart.88.3.222 – ident: e_1_2_9_46_1 doi: 10.1038/ng.2795 – ident: e_1_2_9_22_1 doi: 10.1186/s12885-019-6101-7 – ident: e_1_2_9_14_1 doi: 10.3109/02813432.2010.518407 – ident: e_1_2_9_19_1 doi: 10.17849/insm-47-01-31-39.1 – ident: e_1_2_9_43_1 doi: 10.1161/CIRCULATIONAHA.106.637793 – ident: e_1_2_9_50_1 doi: 10.1016/0140-6736(90)90878-9 – ident: e_1_2_9_2_1 doi: 10.1161/CIR.0000000000000485 – ident: e_1_2_9_18_1 doi: 10.1016/S1532-0464(03)00034-0 – ident: e_1_2_9_47_1 doi: 10.2147/VHRM.S104369 – ident: e_1_2_9_21_1 doi: 10.3389/fnagi.2017.00329 – ident: e_1_2_9_48_1 doi: 10.7326/0003-4819-144-12-200606200-00005 – ident: e_1_2_9_17_1 doi: 10.1097/XCE.0000000000000167 – volume: 34 start-page: 4 issue: 1 year: 2019 ident: e_1_2_9_4_1 article-title: The Joint Task Force for Guideline on the assessment and management of cardiovascular risk in China. Guideline on the assessment and management of cardiovascular risk in China publication-title: Chin Circulat J – ident: e_1_2_9_29_1 doi: 10.1113/JP270538 – ident: e_1_2_9_39_1 doi: 10.1016/j.jacl.2014.07.007 – ident: e_1_2_9_5_1 doi: 10.1016/j.tcm.2014.12.005 – ident: e_1_2_9_34_1 doi: 10.1016/j.amepre.2014.08.019 |
SSID | ssj0008916 |
Score | 2.3996816 |
Snippet | Background
To establish a prediction model for cardiovascular diseases (CVD) in the general population based on random forests.
Methods
A retrospective study... BackgroundTo establish a prediction model for cardiovascular diseases (CVD) in the general population based on random forests.MethodsA retrospective study... To establish a prediction model for cardiovascular diseases (CVD) in the general population based on random forests.BACKGROUNDTo establish a prediction model... |
SourceID | pubmedcentral proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e23421 |
SubjectTerms | Age Blood pressure Body mass index Bronchitis Cardiovascular disease Cardiovascular diseases Cholesterol Diabetes Family medical history Gender High density lipoprotein Hypertension Laboratories Population prediction model Prediction models random forest Regression analysis Risk assessment Risk factors Software Stroke Tuberculosis Variables |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7BIiEuCGgRAYqM2ksrBRLHzqOXaoVAaNWteijS3iLHdgRom2z3ceDfM-P1hi5C3CLZSawZz8sz_gbgi6nTuEpsFeaFzkKBgXKY14UJlY7Qe-WFqN0t1-Gv9PZODEZy5A_cZr6scqUTnaI2raYz8ktOicdUpIn4MfkXUtcoyq76FhqbsEXQZVTSlY26gCvKC9f61AkSauKkgyfll496rC54Ini8bpBevMzXNZL_-67O-Nzswa73Gll_yeZ92LDNAWwPfV78A-jfU3omIjP0QpleqzJlPgszY2SzDMNJnvft9IlRjeh31m-Y8vgkrK0ZWjDT_qVv4SqZa5fzEe5urv9c3Ya-fUKoBaqwUBqrUJ5NnKUmVxgnClvElc5yE2mbxLWoc5mjjUyySOkqilWkE17TfRElRY2a8BB6TdvYI2Bai1gpFFeOr2VSqrSQSNsit6IqrDEBfF3RsNQeW5xaXIzLJSoyL4nepaN3AJ-7uZMlosabs05XrCi9VM3Klz0QwHk3jPJASQ7V2HZBc9DgxhLjwACyNRZ2fyNE7fWR5uHeIWtn6MwkXAbwzTH7nfWVg6ufffd0_P5KT2CHU4juytJOoTefLuwn9GPm1ZnbrM8d_vLl priority: 102 providerName: ProQuest |
Title | Prediction for cardiovascular diseases based on laboratory data: An analysis of random forest model |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcla.23421 https://www.proquest.com/docview/2446664634 https://www.proquest.com/docview/2428415871 https://pubmed.ncbi.nlm.nih.gov/PMC7521325 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS90wFD84hbEX576wm14y5ouDXts0adLhy_WiiEy5yIT7MkqapOim7bgfD9tfv5O0t9crMpgvIdCTNk1yPpJzzi8Ae6ZM4yKxRSgzLUKGG-VQlpkJlY7QeqUZK32W6_lFenrFzsZ8vAaHi1yYBh-iO3BznOHltWNwVUwPlqChP_St6tOE-SxyF6zlLKLLJXaUzPy9p56LUAwnHTYpPVg2XdVGSxPzYYDkfcPVa56Tl_B90ecm4ORnfz4r-vrPAzjHp_7UFmy2JikZNGvoFazZ6jU8P2-d7m9Ajyau7maQoIlL9EoIK2ldPFPiFKIhSNQurHrym7gA1C9kUBHVgp-QuiSoHk19596Fo0D8XTxv4erk-NvwNGzvZgg1Q_kYcmMVCgsTi9RIhZtQZrO40EKaSNskLlkpuUQFnIhI6SKKVaQTWrpkFMVZiWL2HaxXdWW3gWjNYqVQFlBsJjhXacZx7jJpWZFZYwLYX8xRrlvgcnd_xm3eQC7T3I1a7kctgE8d7a8GruNRqp3FVOcty05z6jzbKUsTFsDH7jEym_OgqMrWc0eD2jzmuMkMQKwske5rDq579Ul1c-1huwVaSgnlAXz2K-Af_cvPhl8Hvvb-f4g_wAvqTgN8BNwOrM8mc7uLJtOs6MEzykZYirHAUg7jHmwcHV-MLnv-EKLnWecvQG8ZTQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1da9RAcChXUF_ET4xWXVEfFGKzX_kQRM7acm3vjiIt9C3d7G5opSb1rkX6p_yNzu5tUk-kb30L7CRZ5nt2ZmcA3pg6pRW3VZwXOosFBspxXhcmVjpB75UVova3XCfTdHQgdg7l4Qr87u7CuLLKTid6RW1a7c7I15lLPKYi5eLz2c_YTY1y2dVuhMaCLXbt5S8M2eaftr8ifd8ytrW5vzGKw1SBWAuU7Fgaq5DNDc1SkysMn4QtaKWz3CTaclqLOpc5mg6eJUpXCVWJ5qx21yiUFDV1UyJQ5a8KjqHMAFa_bE73vvW6Py_8sFUvuqj7ed8Qla1_16fqA-OC0WUTeOXX_luV-be37M3d1j24G_xUMlww1n1Ysc0DuDUJmfiHoPdm7tmRlaDfS_RSXSsJeZ85cVbSEAQK3NbOLomrSv1Ihg1RoSMKaWuCNtO0P9y3cJfED-h5BAc3gtrHMGjaxj4BorWgSqGCYPhaJqVKC4m4LXIrqsIaE8G7DoelDt3M3VCN03LRh5mVDt-lx3cEr3vYs0UPj_9CrXWkKIMcz8srrovgVb-MEujSKqqx7YWDQRNPJUaeEWRLJOz_5np4L680J8e-l3eG7hNnMoL3ntjX7K_c2RgP_dPT63f6Em6P9ifjcrw93X0Gd5g7IPBFcWswOJ9d2OfoRZ1XLwLrEji6aWn5AwlkMKM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1da9RAcCgVii_iJ6a2uqI-KMTLbnbzIYgcrUe_6YOFe4ub_UClJu1di_Sv-euc2UtST6RvfQvsJFnme3ZmZwBeW5_xOnV1XJQmjyUGynHhSxtrk6D3Kkrpwy3Xw6Ns50TuTdV0BX73d2GorLLXiUFR29bQGflIUOIxk1kqR74rizjennw6O49pghRlWvtxGgsW2XdXvzB8m3_c3UZavxFi8vnL1k7cTRiIjUQpj5V1Glne8jyzhcZQSrqS1yYvbGJcyr30hSrQjKR5ok2dcJ2YVHi6UqGV9JwmRqD6v5OnipOM5dMh2EuKMoxdDUKMViAdWqOK0Q9zqt-LVAq-bAyvPdx_6zP_9puD4Zvch3udx8rGCxZ7ACuueQhrh11O_hGY4xk9E4EZesDMLFW4si4DNGdkLy1DoI7v2tkVo_rUD2zcMN31RmGtZ2g9bfuTvoW7ZGFUz2M4uRXEPoHVpm3cU2DGSK41qgqBr-VK6axUiNuycLIunbURvO1xWJmurzmN1zitFh2ZRUX4rgK-I3g1wJ4tunn8F2qjJ0XVSfS8uua_CF4OyyiLlGDRjWsvCQaNPVcYg0aQL5Fw-Bt1815eab5_C129c3SkUqEieBeIfcP-qr2tg3F4Wr95py9gDWWkOtg92n8GdwWdFITquA1YvZhduk10py7q54FvGXy9bUH5A9RgM3M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+for+cardiovascular+diseases+based+on+laboratory+data%3A+An+analysis+of+random+forest+model&rft.jtitle=Journal+of+clinical+laboratory+analysis&rft.au=Su%2C+Xi&rft.au=Xu%2C+Yongyong&rft.au=Tan%2C+Zhijun&rft.au=Wang%2C+Xia&rft.date=2020-09-01&rft.issn=1098-2825&rft.eissn=1098-2825&rft.volume=34&rft.issue=9&rft.spage=e23421&rft_id=info:doi/10.1002%2Fjcla.23421&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-8013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-8013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-8013&client=summon |