Kinetics of Phenylpropanoid Gene Expression in Maize Growing Internodes: Relationships with Cell Wall Deposition

Both for cattle nutrition and biofuel production, the improvement in maize (Zea mays L.) cell wall degradability depends on understanding the genetic mechanisms involved in the biosynthesis of phenylpropanoids. Most of the genes involved in monolignol and p-hydroxycinnamate biosynthesis are known, b...

Full description

Saved in:
Bibliographic Details
Published inCrop science Vol. 49; no. 1; pp. 211 - 223
Main Authors Riboulet, C, Guillaumie, S, Méchin, V, Bosio, M, Pichon, M, Goffner, D, Lapierre, C, Pollet, B, Lefevre, B, Martinant, J.P, Barrière, Y
Format Journal Article
LanguageEnglish
Published Madison Crop Science Society of America 01.01.2009
American Society of Agronomy
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Both for cattle nutrition and biofuel production, the improvement in maize (Zea mays L.) cell wall degradability depends on understanding the genetic mechanisms involved in the biosynthesis of phenylpropanoids. Most of the genes involved in monolignol and p-hydroxycinnamate biosynthesis are known, but many belong to multigene families. A macro-array with cell wall gene specific tags was used to characterize the different gene expression profiles in maize ear internode at four stages from 7 d before silking to 15 d after silking. Gene expression profiles were related to biochemical variation observed for lignin content, lignin structure, and esterified and etherified ferulic acid content. Most of the significantly expressed genes had a maximum at the first stages of sampling with their expression decreasing rapidly thereafter. A few genes had a second later expression peak. In each multigene family, only a restricted number of genes were expressed during maize cell wall formation in the below-ear internode. Genes for three phenylalanine ammonia-lyases, two cinnamate 4-hydroxylases, two 4-coumarate:coenzyme A ligases, three caffeoyl-CoA O-methyltransferases, but only one cinnamoyl-CoA reductase, two cinnamyl alcohol dehydrogenases, one ferulate 5-hydroxylase, the only caffeic acid O-methyltransferase, and a ZRP4-like O-methyltransferase were significantly expressed. These genes are likely the most important ones in maize stem lignification, and hence are priority targets in maize breeding.
Bibliography:http://dx.doi.org/10.2135/cropsci2008.03.0130
All rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permission for printing and for reprinting the material contained herein has been obtained by the publisher.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0011-183X
1435-0653
DOI:10.2135/cropsci2008.03.0130