Differential Expression of Ly6C and T-bet Distinguish Effector and Memory Th1 CD4 + Cell Properties during Viral Infection
CD4 + T cells differentiate into multiple effector types, but it is unclear how they form memory T cells during infection in vivo. Profiling virus-specific CD4 + T cells revealed that effector cells with T helper 1 (Th1) or T follicular helper (Tfh) cell characteristics differentiated into memory ce...
Saved in:
Published in | Immunity (Cambridge, Mass.) Vol. 35; no. 4; pp. 633 - 646 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
28.10.2011
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | CD4
+ T cells differentiate into multiple effector types, but it is unclear how they form memory T cells during infection in vivo. Profiling virus-specific CD4
+ T cells revealed that effector cells with T helper 1 (Th1) or T follicular helper (Tfh) cell characteristics differentiated into memory cells, although expression of Tfh cell markers declined over time. In contrast to virus-specific effector CD8
+ T cells, increased IL-7R expression was not a reliable marker of CD4
+ memory precursor cells. However, decreased Ly6C and T-bet (
Tbx21) expression distinguished a subset of Th1 cells that displayed greater longevity and proliferative responses to secondary infection. Moreover, the gene expression profile of Ly6C
loT-bet
int Th1 effector cells was virtually identical to mature memory CD4
+ T cells, indicating early maturation of memory CD4
+ T cell features in this subset during acute viral infection. This study provides a framework for memory CD4
+ T cell development after acute viral infection.
[Display omitted]
► Increased IL-7R expression does not mark CD4
+ memory precursor cells ► T-bet acts in a graded manner to regulate formation of Th1 and Tfh cell subsets ► Ly6C
loT-bet
int Th1 effector CD4
+ cells have enhanced longevity and recall responses ► Ly6C
loT-bet
int Th1 effector and memory CD4
+ cells share similar gene expression |
---|---|
AbstractList | CD4
+ T cells differentiate into multiple effector types, but it is unclear how they form memory T cells during infection in vivo. Profiling virus-specific CD4
+ T cells revealed that effector cells with T helper 1 (Th1) or T follicular helper (Tfh) cell characteristics differentiated into memory cells, although expression of Tfh cell markers declined over time. In contrast to virus-specific effector CD8
+ T cells, increased IL-7R expression was not a reliable marker of CD4
+ memory precursor cells. However, decreased Ly6C and T-bet (
Tbx21) expression distinguished a subset of Th1 cells that displayed greater longevity and proliferative responses to secondary infection. Moreover, the gene expression profile of Ly6C
loT-bet
int Th1 effector cells was virtually identical to mature memory CD4
+ T cells, indicating early maturation of memory CD4
+ T cell features in this subset during acute viral infection. This study provides a framework for memory CD4
+ T cell development after acute viral infection.
[Display omitted]
► Increased IL-7R expression does not mark CD4
+ memory precursor cells ► T-bet acts in a graded manner to regulate formation of Th1 and Tfh cell subsets ► Ly6C
loT-bet
int Th1 effector CD4
+ cells have enhanced longevity and recall responses ► Ly6C
loT-bet
int Th1 effector and memory CD4
+ cells share similar gene expression CD4 + T cells differentiate into multiple effector types, but it is unclear how they form memory T cells during infection in vivo. Profiling virus-specific CD4 + T cells revealed that effector cells with T helper 1 (Th1) or T follicular helper (Tfh) cell characteristics differentiated into memory cells, although expression of Tfh cell markers declined over time. In contrast to virus-specific effector CD8 + T cells, increased IL-7R expression was not a reliable marker of CD4 + memory precursor cells. However, decreased Ly6C and T-bet ( Tbx21 ) expression distinguished a subset of Th1 cells that displayed greater longevity and proliferative responses to secondary infection. Moreover, the gene expression profile of Ly6C lo T-bet int Th1 effector cells was virtually identical to mature memory CD4 + T cells, indicating early maturation of memory CD4 + T cell features in this subset during acute viral infection. This study provides a framework for memory CD4 + T cell development after acute viral infection. CD4+T cells differentiate into multiple effector types, but it is unclear how they form memory T cells during infection in vivo. Profiling virus-specific CD4+T cells revealed that effector cells with T helper 1 (Th1) or T follicular helper (Tfh) cell characteristics differentiated into memory cells, although expression of Tfh cell markers declined over time. In contrast to virus-specific effector CD8+T cells, increased IL-7R expression was not a reliable marker of CD4+memory precursor cells. However, decreased Ly6C and T-bet (Tbx21) expression distinguished a subset of Th1 cells that displayed greater longevity and proliferative responses to secondary infection. Moreover, the gene expression profile of Ly6CloT-betintTh1 effector cells was virtually identical to mature memory CD4+T cells, indicating early maturation of memory CD4+T cell features in this subset during acute viral infection. This study provides a framework for memory CD4+T cell development after acute viral infection. CD4(+) T cells differentiate into multiple effector types, but it is unclear how they form memory T cells during infection in vivo. Profiling virus-specific CD4(+) T cells revealed that effector cells with T helper 1 (Th1) or T follicular helper (Tfh) cell characteristics differentiated into memory cells, although expression of Tfh cell markers declined over time. In contrast to virus-specific effector CD8(+) T cells, increased IL-7R expression was not a reliable marker of CD4(+) memory precursor cells. However, decreased Ly6C and T-bet (Tbx21) expression distinguished a subset of Th1 cells that displayed greater longevity and proliferative responses to secondary infection. Moreover, the gene expression profile of Ly6C(lo)T-bet(int) Th1 effector cells was virtually identical to mature memory CD4(+) T cells, indicating early maturation of memory CD4(+) T cell features in this subset during acute viral infection. This study provides a framework for memory CD4(+) T cell development after acute viral infection. CD4(+) T cells differentiate into multiple effector types, but it is unclear how they form memory T cells during infection in vivo. Profiling virus-specific CD4(+) T cells revealed that effector cells with T helper 1 (Th1) or T follicular helper (Tfh) cell characteristics differentiated into memory cells, although expression of Tfh cell markers declined over time. In contrast to virus-specific effector CD8(+) T cells, increased IL-7R expression was not a reliable marker of CD4(+) memory precursor cells. However, decreased Ly6C and T-bet (Tbx21) expression distinguished a subset of Th1 cells that displayed greater longevity and proliferative responses to secondary infection. Moreover, the gene expression profile of Ly6C(lo)T-bet(int) Th1 effector cells was virtually identical to mature memory CD4(+) T cells, indicating early maturation of memory CD4(+) T cell features in this subset during acute viral infection. This study provides a framework for memory CD4(+) T cell development after acute viral infection.CD4(+) T cells differentiate into multiple effector types, but it is unclear how they form memory T cells during infection in vivo. Profiling virus-specific CD4(+) T cells revealed that effector cells with T helper 1 (Th1) or T follicular helper (Tfh) cell characteristics differentiated into memory cells, although expression of Tfh cell markers declined over time. In contrast to virus-specific effector CD8(+) T cells, increased IL-7R expression was not a reliable marker of CD4(+) memory precursor cells. However, decreased Ly6C and T-bet (Tbx21) expression distinguished a subset of Th1 cells that displayed greater longevity and proliferative responses to secondary infection. Moreover, the gene expression profile of Ly6C(lo)T-bet(int) Th1 effector cells was virtually identical to mature memory CD4(+) T cells, indicating early maturation of memory CD4(+) T cell features in this subset during acute viral infection. This study provides a framework for memory CD4(+) T cell development after acute viral infection. |
Author | Marshall, Heather D. Poholek, Amanda C. Craft, Joe Rutishauser, Rachel Kaech, Susan M. Jung, Yong Woo Kleinstein, Steven H. Chandele, Anmol Parish, Ian A. Meng, Hailong Cui, Weiguo |
AuthorAffiliation | 2 Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA 3 Interdepartmental Program in Computational Biology and Bioinformatics, Yale University School of Medicine, New Haven, CT 06520, USA 5 Department of Pharmacy, Korea University, Chungnam 339-700, Korea 4 Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA 6 Howard Hughes Medical Institute 1 Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA |
AuthorAffiliation_xml | – name: 2 Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA – name: 1 Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA – name: 3 Interdepartmental Program in Computational Biology and Bioinformatics, Yale University School of Medicine, New Haven, CT 06520, USA – name: 5 Department of Pharmacy, Korea University, Chungnam 339-700, Korea – name: 4 Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA – name: 6 Howard Hughes Medical Institute |
Author_xml | – sequence: 1 givenname: Heather D. surname: Marshall fullname: Marshall, Heather D. organization: Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA – sequence: 2 givenname: Anmol surname: Chandele fullname: Chandele, Anmol organization: Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA – sequence: 3 givenname: Yong Woo surname: Jung fullname: Jung, Yong Woo organization: Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA – sequence: 4 givenname: Hailong surname: Meng fullname: Meng, Hailong organization: Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA – sequence: 5 givenname: Amanda C. surname: Poholek fullname: Poholek, Amanda C. organization: Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA – sequence: 6 givenname: Ian A. surname: Parish fullname: Parish, Ian A. organization: Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA – sequence: 7 givenname: Rachel surname: Rutishauser fullname: Rutishauser, Rachel organization: Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA – sequence: 8 givenname: Weiguo surname: Cui fullname: Cui, Weiguo organization: Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA – sequence: 9 givenname: Steven H. surname: Kleinstein fullname: Kleinstein, Steven H. organization: Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA – sequence: 10 givenname: Joe surname: Craft fullname: Craft, Joe organization: Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA – sequence: 11 givenname: Susan M. surname: Kaech fullname: Kaech, Susan M. email: susan.kaech@yale.edu organization: Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22018471$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUU2P0zAQjdAi9gP-AUKWOHBAKTONk9gcVkJtgZWK4FBxtVxnsnWV2MVOVpRfj0vLCvYAJ1sz772ZN-8yO3PeUZY9R5ggYPVmO7F9Pzo7mQLiBMQkFR9lFwiyzjkKODv8a57XFRbn2WWMWwDkpYQn2fk0cQSv8SL7MbdtS4HcYHXHFt93gWK03jHfsuW-mjHtGrbK1zSwuY2DdbejjRu2SCQz-PCr_Yl6H_ZstUE2m3P2ms2o69iX4HcUBkuRNWNIRPbVhjTjxh2oacTT7HGru0jPTu9Vtnq_WM0-5svPH25m75a54RKGnAAEUC1LLCuJmgqNjSwMtlyuZUMk0dRcE-LaCDHlsuK6IINairoE0MVVdn2U3Y3rnhqTrKY11C7YXoe98tqqvzvObtStv1MF5xwrmQRenQSC_zZSHFRvo0kWtSM_RiUBCygqAQn58gFy68fgkjmFJXJRARcioV78udD9Jr9DSQB-BJjgYwzU3kMQ1CF7tVXH7NUhewVCpWKivX1AM3bQh0snW7b7H_l0JUpJ3FkKKhpLzlBjQ4pLNd7-W-An_AHMYQ |
CitedBy_id | crossref_primary_10_1074_jbc_M116_741264 crossref_primary_10_1089_jir_2019_0008 crossref_primary_10_1016_j_celrep_2013_03_035 crossref_primary_10_1111_imcb_12272 crossref_primary_10_1371_journal_pone_0081573 crossref_primary_10_1111_cei_12829 crossref_primary_10_1111_imr_12740 crossref_primary_10_1111_imr_12742 crossref_primary_10_1126_sciimmunol_abq7486 crossref_primary_10_1172_jci_insight_168437 crossref_primary_10_1016_j_mucimm_2024_11_003 crossref_primary_10_1016_j_cellimm_2018_06_005 crossref_primary_10_1146_annurev_immunol_032414_112014 crossref_primary_10_3389_fimmu_2017_01548 crossref_primary_10_1128_jvi_01014_22 crossref_primary_10_18632_oncotarget_9254 crossref_primary_10_4049_jimmunol_1401617 crossref_primary_10_3390_cells9030531 crossref_primary_10_1016_j_celrep_2019_03_030 crossref_primary_10_1084_jem_20161794 crossref_primary_10_1084_jem_20200547 crossref_primary_10_3390_nu13010118 crossref_primary_10_3389_fimmu_2020_01958 crossref_primary_10_1128_JVI_01627_20 crossref_primary_10_3389_fimmu_2020_02125 crossref_primary_10_1111_ajt_13821 crossref_primary_10_4049_jimmunol_1700232 crossref_primary_10_1016_j_ajpath_2024_07_021 crossref_primary_10_1038_nri3126 crossref_primary_10_4049_jimmunol_1201482 crossref_primary_10_1111_imm_12942 crossref_primary_10_4049_jimmunol_1302661 crossref_primary_10_1016_j_celrep_2017_03_060 crossref_primary_10_1016_j_celrep_2024_115111 crossref_primary_10_1038_s41590_023_01453_w crossref_primary_10_3389_fimmu_2018_02054 crossref_primary_10_1111_imr_12040 crossref_primary_10_4049_jimmunol_2100210 crossref_primary_10_1182_blood_2012_09_378653 crossref_primary_10_4049_jimmunol_1403216 crossref_primary_10_1084_jem_20120219 crossref_primary_10_1016_j_immuni_2011_09_019 crossref_primary_10_1007_s10522_018_9754_8 crossref_primary_10_1111_imr_12945 crossref_primary_10_1126_sciimmunol_aba8097 crossref_primary_10_1016_j_pt_2019_04_002 crossref_primary_10_1128_IAI_01091_13 crossref_primary_10_1016_j_immuni_2012_06_014 crossref_primary_10_1002_cyto_a_22906 crossref_primary_10_1038_nrrheum_2012_58 crossref_primary_10_1126_sciadv_adk2693 crossref_primary_10_1038_s41590_020_0800_8 crossref_primary_10_1016_j_vetimm_2024_110816 crossref_primary_10_1038_s41598_020_69327_x crossref_primary_10_1038_nri3152 crossref_primary_10_1111_imr_12538 crossref_primary_10_1172_JCI93289 crossref_primary_10_1016_j_mucimm_2023_06_007 crossref_primary_10_1016_j_immuni_2011_10_001 crossref_primary_10_1146_annurev_immunol_103019_085803 crossref_primary_10_1016_j_immuni_2013_08_033 crossref_primary_10_1016_j_immuni_2014_10_004 crossref_primary_10_1016_j_immuni_2018_12_019 crossref_primary_10_1016_j_coi_2013_05_003 crossref_primary_10_1073_pnas_2309153121 crossref_primary_10_4049_jimmunol_1401928 crossref_primary_10_3389_fimmu_2018_01260 crossref_primary_10_1016_j_jconrel_2013_07_030 crossref_primary_10_1084_jem_20211110 crossref_primary_10_1126_sciimmunol_add3075 crossref_primary_10_1172_JCI66108 crossref_primary_10_1016_j_cell_2013_04_007 crossref_primary_10_1084_jem_20170457 crossref_primary_10_1093_intimm_dxac025 crossref_primary_10_1371_journal_pone_0060420 crossref_primary_10_4049_jimmunol_1202963 crossref_primary_10_2174_1570162X18666191231105438 crossref_primary_10_1371_journal_ppat_1004538 crossref_primary_10_1002_eji_201646399 crossref_primary_10_1038_nature14156 crossref_primary_10_1101_cshperspect_a037879 crossref_primary_10_1093_oxfimm_iqab008 crossref_primary_10_4049_jimmunol_2200407 crossref_primary_10_1038_mi_2016_66 crossref_primary_10_4049_jimmunol_1102702 crossref_primary_10_1017_S0031182021001311 crossref_primary_10_1016_j_cell_2021_11_007 crossref_primary_10_1016_j_immuni_2024_07_024 crossref_primary_10_1038_s41467_024_45084_7 crossref_primary_10_3390_ijms25052509 crossref_primary_10_1038_s41590_023_01510_4 crossref_primary_10_1093_intimm_dxab020 crossref_primary_10_4049_jimmunol_1500812 crossref_primary_10_1038_nri3173 crossref_primary_10_1371_journal_pone_0065234 crossref_primary_10_3389_fimmu_2023_1058267 crossref_primary_10_1038_s41467_023_39299_3 crossref_primary_10_1016_j_immuni_2013_02_020 crossref_primary_10_1002_art_41532 crossref_primary_10_1016_j_imlet_2014_07_015 crossref_primary_10_1101_cshperspect_a038141 crossref_primary_10_1038_nri_2015_1 crossref_primary_10_1016_j_ebiom_2022_103958 crossref_primary_10_4049_jimmunol_1700420 crossref_primary_10_7554_eLife_08698 crossref_primary_10_1007_s12026_013_8457_0 crossref_primary_10_1172_JCI87041 crossref_primary_10_3389_fimmu_2019_00606 crossref_primary_10_1189_jlb_1HI0314_154R crossref_primary_10_1128_JVI_01653_16 crossref_primary_10_1128_mBio_00337_19 crossref_primary_10_1016_j_jneuroim_2018_10_007 crossref_primary_10_3389_fimmu_2018_01227 crossref_primary_10_1016_j_celrep_2017_10_077 crossref_primary_10_3390_v4112650 crossref_primary_10_1093_intimm_dxab090 crossref_primary_10_1002_eji_201242540 crossref_primary_10_7554_eLife_76339 crossref_primary_10_1038_icb_2013_68 crossref_primary_10_1084_jem_20141518 crossref_primary_10_1016_j_xcrm_2021_100262 crossref_primary_10_1016_j_cytogfr_2013_10_002 crossref_primary_10_1038_s41385_019_0183_z crossref_primary_10_1136_jitc_2021_003368 crossref_primary_10_7554_eLife_61869 crossref_primary_10_1038_s41586_022_04916_6 crossref_primary_10_1016_j_dci_2016_02_022 crossref_primary_10_1073_pnas_1705795114 crossref_primary_10_4049_jimmunol_1502481 crossref_primary_10_3389_fimmu_2020_615371 crossref_primary_10_4049_jimmunol_1501274 crossref_primary_10_4049_jimmunol_1601687 crossref_primary_10_1126_sciimmunol_aal2192 crossref_primary_10_1111_all_15470 crossref_primary_10_1038_ni_3229 crossref_primary_10_1038_s41423_019_0219_z crossref_primary_10_5528_wjtm_v4_i3_60 crossref_primary_10_4049_jimmunol_2300017 crossref_primary_10_1016_j_celrep_2023_112407 crossref_primary_10_1111_j_1600_065X_2012_01122_x crossref_primary_10_1016_j_smim_2023_101797 crossref_primary_10_1073_pnas_1403271111 crossref_primary_10_1038_s41423_020_00554_y crossref_primary_10_1093_intimm_dxv071 crossref_primary_10_1084_jem_20181878 crossref_primary_10_3389_fimmu_2021_630389 crossref_primary_10_4049_immunohorizons_1900070 crossref_primary_10_4049_immunohorizons_2000059 crossref_primary_10_1016_j_immuni_2012_08_016 crossref_primary_10_1016_j_autrev_2021_102933 crossref_primary_10_1093_cei_uxab027 crossref_primary_10_7554_eLife_04851 crossref_primary_10_4049_jimmunol_1701154 crossref_primary_10_1161_CIRCRESAHA_117_312513 crossref_primary_10_1073_pnas_2204254119 crossref_primary_10_3389_fimmu_2015_00456 crossref_primary_10_1084_jem_20202343 crossref_primary_10_1016_j_jconrel_2021_12_022 crossref_primary_10_1038_nri3536 crossref_primary_10_3390_cells13070639 crossref_primary_10_4049_jimmunol_1202183 crossref_primary_10_1016_j_it_2017_02_002 crossref_primary_10_1111_imm_12890 crossref_primary_10_1038_ni_2490 crossref_primary_10_1016_j_it_2017_02_003 crossref_primary_10_4049_jimmunol_1600968 crossref_primary_10_4137_VRT_S12147 crossref_primary_10_1016_j_immuni_2014_02_005 crossref_primary_10_7554_eLife_80079 crossref_primary_10_1126_sciimmunol_aas9103 crossref_primary_10_1128_CMR_00097_13 crossref_primary_10_3389_fimmu_2020_574491 crossref_primary_10_1146_annurev_immunol_032712_095954 crossref_primary_10_1038_nri3307 crossref_primary_10_1038_s41577_019_0145_4 crossref_primary_10_1111_imm_13059 crossref_primary_10_1126_science_1220961 crossref_primary_10_3389_fimmu_2017_00489 crossref_primary_10_1016_j_jaci_2020_03_017 crossref_primary_10_1158_2326_6066_CIR_23_0729 crossref_primary_10_1038_s41577_020_0332_3 crossref_primary_10_1016_j_immuni_2023_02_010 crossref_primary_10_3389_fimmu_2016_00026 crossref_primary_10_4049_jimmunol_1701251 crossref_primary_10_4049_jimmunol_1600838 crossref_primary_10_1002_cyto_a_24740 crossref_primary_10_1126_sciimmunol_aay5552 crossref_primary_10_3389_fimmu_2014_00488 crossref_primary_10_15252_embj_201899176 crossref_primary_10_3390_ijms23158246 crossref_primary_10_3389_fimmu_2024_1375413 crossref_primary_10_1126_sciimmunol_aan4767 crossref_primary_10_1038_s44318_024_00133_1 crossref_primary_10_1073_pnas_1706356114 crossref_primary_10_1016_j_it_2013_01_001 crossref_primary_10_1016_j_immuni_2021_03_006 crossref_primary_10_1038_s41467_022_34791_8 crossref_primary_10_1084_jem_20221466 crossref_primary_10_1186_s12979_021_00230_3 crossref_primary_10_1016_j_cyto_2016_06_010 crossref_primary_10_1186_s12931_017_0707_6 crossref_primary_10_4049_jimmunol_1801567 crossref_primary_10_1016_j_cellimm_2016_07_010 crossref_primary_10_1016_j_immuni_2022_01_002 crossref_primary_10_1002_eji_201343690 crossref_primary_10_3389_fimmu_2018_00593 crossref_primary_10_1084_jem_20200650 crossref_primary_10_3390_antib2040554 crossref_primary_10_1189_jlb_2RI0613_347R crossref_primary_10_1016_j_immuni_2015_08_017 crossref_primary_10_1073_pnas_1404671111 crossref_primary_10_4049_jimmunol_2300570 crossref_primary_10_15252_emmm_202317713 crossref_primary_10_1128_JVI_00841_21 crossref_primary_10_1016_j_immuni_2022_05_003 crossref_primary_10_1002_JLB_4AB1219_254R crossref_primary_10_1002_eji_201343469 crossref_primary_10_1155_2015_202816 crossref_primary_10_1016_j_it_2015_09_004 crossref_primary_10_3389_fimmu_2015_00016 crossref_primary_10_3390_biom12111549 crossref_primary_10_1007_s00281_017_0648_7 crossref_primary_10_1073_pnas_1206573109 crossref_primary_10_1016_j_celrep_2016_01_002 crossref_primary_10_4049_jimmunol_1200244 crossref_primary_10_4049_jimmunol_1602110 crossref_primary_10_1016_j_celrep_2019_07_034 crossref_primary_10_4049_jimmunol_1501291 crossref_primary_10_1084_jem_20201730 crossref_primary_10_1016_j_immuni_2022_01_018 |
Cites_doi | 10.1016/j.immuni.2008.02.014 10.1016/j.smim.2009.02.006 10.1073/pnas.0400640101 10.4049/jimmunol.1002955 10.1038/ni.1826 10.1084/jem.20061805 10.1126/science.1178334 10.1182/blood-2005-08-3103 10.1084/jem.20080840 10.1038/ni1472 10.4049/jimmunol.0904023 10.4049/jimmunol.178.9.5488 10.4049/jimmunol.1001948 10.4049/jimmunol.178.7.4027 10.1038/nature06672 10.1038/ni1009 10.1084/jem.20030725 10.1038/90950 10.1084/jem.191.12.2065 10.1126/science.1175870 10.1016/j.immuni.2004.07.016 10.1038/ni.1704 10.1038/ni1107 10.1016/j.immuni.2007.07.010 10.1016/j.immuni.2004.09.008 10.1126/science.1124228 10.4049/jimmunol.1000842 10.4049/jimmunol.180.8.5309 10.1128/MCB.10.10.5150 10.1084/jem.20021052 10.1126/science.286.5443.1381 10.1084/jem.20030735 10.1073/pnas.141218898 10.1084/jem.20070041 10.1016/j.immuni.2009.03.015 |
ContentType | Journal Article |
Copyright | 2011 Elsevier Inc. Copyright © 2011 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Oct 28, 2011 2011 Elsevier Inc. 2011 |
Copyright_xml | – notice: 2011 Elsevier Inc. – notice: Copyright © 2011 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Oct 28, 2011 – notice: 2011 Elsevier Inc. 2011 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7T5 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 K9. M7N NAPCQ P64 RC3 7X8 5PM |
DOI | 10.1016/j.immuni.2011.08.016 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Nursing & Allied Health Premium Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1097-4180 |
EndPage | 646 |
ExternalDocumentID | PMC3444169 3272411181 22018471 10_1016_j_immuni_2011_08_016 S1074761311004067 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAMS NIH HHS grantid: R01 AR040072 – fundername: NIAMS NIH HHS grantid: R37 AR040072 – fundername: Howard Hughes Medical Institute – fundername: NIAID NIH HHS grantid: F32 AI094791 – fundername: NIAID NIH HHS grantid: R01 AI066232 – fundername: NIAID NIH HHS grantid: R01 AI074699 – fundername: NIAID NIH HHS grantid: T32 AI007019 – fundername: National Institute of Allergy and Infectious Diseases Extramural Activities : NIAID grantid: R01 AI074699-03 || AI |
GroupedDBID | --- --K -DZ .55 .GJ 0R~ 1RT 1~5 29I 2WC 3V. 4.4 457 4G. 53G 5GY 5VS 62- 6I. 7-5 7RV 7X7 8C1 8FE 8FH AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKRW AALRI AAQFI AAQXK AAUCE AAVLU AAXJY AAXUO ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ACIWK ACPRK ADBBV ADEZE ADFRT ADJPV ADMUD AEFWE AENEX AEXQZ AFKRA AFRAH AFTJW AGGSO AGHFR AGKMS AHHHB AHMBA AHPSJ AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL BBNVY BENPR BHPHI BKEYQ BPHCQ BVXVI C45 CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FGOYB FIRID G-2 HCIFZ HVGLF HZ~ IH2 IHE IXB J1W JIG LK8 LX5 M2O M3Z M41 M7P N9A NCXOZ O-L O9- OHT OK1 OVD OZT P2P PQQKQ PROAC R2- RCE RIG ROL RPZ SCP SES SSZ TEORI TR2 UHS WQ6 X7M Y6R ZA5 ZGI AAMRU AAYWO AAYXX ABDGV ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEUPX AFPUW AGCQF AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION CGR CUY CVF ECM EFKBS EIF NPM 7QL 7QP 7QR 7T5 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 K9. M7N NAPCQ P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c490t-e0080e79515691ae3a1d93c1f49b9dee91c74ae11bc8824964a3ec1a987500a3 |
IEDL.DBID | IXB |
ISSN | 1074-7613 1097-4180 |
IngestDate | Thu Aug 21 18:22:22 EDT 2025 Mon Jul 21 11:12:27 EDT 2025 Fri Jul 25 11:06:59 EDT 2025 Mon Jul 21 06:03:15 EDT 2025 Fri Jul 04 04:46:09 EDT 2025 Thu Apr 24 23:07:49 EDT 2025 Fri Feb 23 02:28:42 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 Copyright © 2011 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c490t-e0080e79515691ae3a1d93c1f49b9dee91c74ae11bc8824964a3ec1a987500a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1074761311004067 |
PMID | 22018471 |
PQID | 1514860488 |
PQPubID | 2031079 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3444169 proquest_miscellaneous_901303680 proquest_journals_1514860488 pubmed_primary_22018471 crossref_primary_10_1016_j_immuni_2011_08_016 crossref_citationtrail_10_1016_j_immuni_2011_08_016 elsevier_sciencedirect_doi_10_1016_j_immuni_2011_08_016 |
PublicationCentury | 2000 |
PublicationDate | 2011-10-28 |
PublicationDateYYYYMMDD | 2011-10-28 |
PublicationDate_xml | – month: 10 year: 2011 text: 2011-10-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Cambridge |
PublicationTitle | Immunity (Cambridge, Mass.) |
PublicationTitleAlternate | Immunity |
PublicationYear | 2011 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | McKinstry, Golech, Lee, Huston, Weng, Swain (bib23) 2007; 204 Kaech, Tan, Wherry, Konieczny, Surh, Ahmed (bib13) 2003; 4 Odegard, Marks, DiPlacido, Poholek, Kono, Dong, Flavell, Craft (bib25) 2008; 205 Joshi, Cui, Chandele, Lee, Urso, Hagman, Gapin, Kaech (bib11) 2007; 27 (bib33) 2010 O'Shea, Paul (bib24) 2010; 327 Jung, Rutishauser, Joshi, Haberman, Kaech (bib12) 2010; 185 Román, Miller, Harmsen, Wiley, Von Andrian, Huston, Swain (bib31) 2002; 196 Malherbe, Hausl, Teyton, McHeyzer-Williams (bib21) 2004; 21 Park, Yu, Erman, Appelbaum, Montoya-Durango, Grimes, Singer (bib26) 2004; 21 Fazilleau, Eisenbraun, Malherbe, Ebright, Pogue-Caley, McHeyzer-Williams, McHeyzer-Williams (bib5) 2007; 8 Fazilleau, McHeyzer-Williams, Rosen, McHeyzer-Williams (bib6) 2009; 10 Polic, Kunkel, Scheffold, Rajewsky (bib29) 2001; 98 Blander, Sant'Angelo, Bottomly, Janeway (bib2) 2000; 191 Matsuda, Zhang, Ndonye, Richardson, Howell, Gapin (bib22) 2006; 107 De Riva, Bourgeois, Kassiotis, Stockinger (bib4) 2007; 178 Pepper, Linehan, Pagán, Zell, Dileepan, Cleary, Jenkins (bib27) 2010; 11 Tripathi, Kurtulus, Wojciechowski, Sholl, Hoebe, Morris, Finkelman, Grimes, Hildeman (bib36) 2010; 185 Li, Huston, Swain (bib17) 2003; 198 Khan, Lindwall, Maher, Bothwell (bib14) 1990; 10 MacLeod, Clambey, Kappler, Marrack (bib19) 2009; 21 MacLeod, David, McKee, Crawford, Kappler, Marrack (bib20) 2011; 186 Poholek, Hansen, Hernandez, Eto, Chandele, Weinstein, Dong, Odegard, Kaech, Dent (bib28) 2010; 185 Homann, Teyton, Oldstone (bib9) 2001; 7 Johnston, Poholek, DiToro, Yusuf, Eto, Barnett, Dent, Craft, Crotty (bib10) 2009; 325 Williams, Ravkov, Bevan (bib37) 2008; 28 Hataye, Moon, Khoruts, Reilly, Jenkins (bib8) 2006; 312 Kondrack, Harbertson, Tan, McBreen, Surh, Bradley (bib15) 2003; 198 Lenz, Kurz, Lemmens, Schoenberger, Sprent, Oldstone, Homann (bib16) 2004; 101 Swain, Hu, Huston (bib32) 1999; 286 Tokoyoda, Zehentmeier, Hegazy, Albrecht, Grün, Löhning, Radbruch (bib34) 2009; 30 Tripathi, Mitchell, Finkelman, Hildeman (bib35) 2007; 178 Bamezai (bib1) 2004; 52 Chandele, Joshi, Zhu, Paul, Leonard, Kaech (bib3) 2008; 180 Harrington, Janowski, Oliver, Zajac, Weaver (bib7) 2008; 452 Purton, Tan, Rubinstein, Kim, Sprent, Surh (bib30) 2007; 204 Liu, Phillips, Zhang, Wang, Opferman, Shah, Ashton-Rickardt (bib18) 2004; 5 Williams (10.1016/j.immuni.2011.08.016_bib37) 2008; 28 Fazilleau (10.1016/j.immuni.2011.08.016_bib6) 2009; 10 MacLeod (10.1016/j.immuni.2011.08.016_bib20) 2011; 186 Polic (10.1016/j.immuni.2011.08.016_bib29) 2001; 98 Román (10.1016/j.immuni.2011.08.016_bib31) 2002; 196 De Riva (10.1016/j.immuni.2011.08.016_bib4) 2007; 178 Tripathi (10.1016/j.immuni.2011.08.016_bib36) 2010; 185 Jung (10.1016/j.immuni.2011.08.016_bib12) 2010; 185 Khan (10.1016/j.immuni.2011.08.016_bib14) 1990; 10 Li (10.1016/j.immuni.2011.08.016_bib17) 2003; 198 Hataye (10.1016/j.immuni.2011.08.016_bib8) 2006; 312 Poholek (10.1016/j.immuni.2011.08.016_bib28) 2010; 185 Malherbe (10.1016/j.immuni.2011.08.016_bib21) 2004; 21 Tripathi (10.1016/j.immuni.2011.08.016_bib35) 2007; 178 Harrington (10.1016/j.immuni.2011.08.016_bib7) 2008; 452 (10.1016/j.immuni.2011.08.016_bib33) 2010 Johnston (10.1016/j.immuni.2011.08.016_bib10) 2009; 325 O'Shea (10.1016/j.immuni.2011.08.016_bib24) 2010; 327 Pepper (10.1016/j.immuni.2011.08.016_bib27) 2010; 11 McKinstry (10.1016/j.immuni.2011.08.016_bib23) 2007; 204 Purton (10.1016/j.immuni.2011.08.016_bib30) 2007; 204 Fazilleau (10.1016/j.immuni.2011.08.016_bib5) 2007; 8 Joshi (10.1016/j.immuni.2011.08.016_bib11) 2007; 27 Odegard (10.1016/j.immuni.2011.08.016_bib25) 2008; 205 Chandele (10.1016/j.immuni.2011.08.016_bib3) 2008; 180 Blander (10.1016/j.immuni.2011.08.016_bib2) 2000; 191 Kaech (10.1016/j.immuni.2011.08.016_bib13) 2003; 4 Park (10.1016/j.immuni.2011.08.016_bib26) 2004; 21 Homann (10.1016/j.immuni.2011.08.016_bib9) 2001; 7 MacLeod (10.1016/j.immuni.2011.08.016_bib19) 2009; 21 Swain (10.1016/j.immuni.2011.08.016_bib32) 1999; 286 Tokoyoda (10.1016/j.immuni.2011.08.016_bib34) 2009; 30 Lenz (10.1016/j.immuni.2011.08.016_bib16) 2004; 101 Bamezai (10.1016/j.immuni.2011.08.016_bib1) 2004; 52 Matsuda (10.1016/j.immuni.2011.08.016_bib22) 2006; 107 Liu (10.1016/j.immuni.2011.08.016_bib18) 2004; 5 Kondrack (10.1016/j.immuni.2011.08.016_bib15) 2003; 198 22035843 - Immunity. 2011 Oct 28;35(4):496-8. doi: 10.1016/j.immuni.2011.10.001. |
References_xml | – volume: 21 start-page: 289 year: 2004 end-page: 302 ident: bib26 article-title: Suppression of IL7Ralpha transcription by IL-7 and other prosurvival cytokines: a novel mechanism for maximizing IL-7-dependent T cell survival publication-title: Immunity – volume: 5 start-page: 919 year: 2004 end-page: 926 ident: bib18 article-title: Serine protease inhibitor 2A is a protective factor for memory T cell development publication-title: Nat. Immunol. – volume: 198 start-page: 1797 year: 2003 end-page: 1806 ident: bib15 article-title: Interleukin 7 regulates the survival and generation of memory CD4 cells publication-title: J. Exp. Med. – volume: 204 start-page: 951 year: 2007 end-page: 961 ident: bib30 article-title: Antiviral CD4+ memory T cells are IL-15 dependent publication-title: J. Exp. Med. – volume: 7 start-page: 913 year: 2001 end-page: 919 ident: bib9 article-title: Differential regulation of antiviral T-cell immunity results in stable CD8+ but declining CD4+ T-cell memory publication-title: Nat. Med. – volume: 180 start-page: 5309 year: 2008 end-page: 5319 ident: bib3 article-title: Formation of IL-7Ralphahigh and IL-7Ralphalow CD8 T cells during infection is regulated by the opposing functions of GABPalpha and Gfi-1 publication-title: J. Immunol. – volume: 8 start-page: 753 year: 2007 end-page: 761 ident: bib5 article-title: Lymphoid reservoirs of antigen-specific memory T helper cells publication-title: Nat. Immunol. – volume: 198 start-page: 1807 year: 2003 end-page: 1815 ident: bib17 article-title: IL-7 promotes the transition of CD4 effectors to persistent memory cells publication-title: J. Exp. Med. – volume: 452 start-page: 356 year: 2008 end-page: 360 ident: bib7 article-title: Memory CD4 T cells emerge from effector T-cell progenitors publication-title: Nature – volume: 10 start-page: 5150 year: 1990 end-page: 5159 ident: bib14 article-title: Characterization of promoter elements of an interferon-inducible Ly-6E/A differentiation antigen, which is expressed on activated T cells and hematopoietic stem cells publication-title: Mol. Cell. Biol. – volume: 98 start-page: 8744 year: 2001 end-page: 8749 ident: bib29 article-title: How alpha beta T cells deal with induced TCR alpha ablation publication-title: Proc. Natl. Acad. Sci. USA – volume: 286 start-page: 1381 year: 1999 end-page: 1383 ident: bib32 article-title: Class II-independent generation of CD4 memory T cells from effectors publication-title: Science – volume: 178 start-page: 5488 year: 2007 end-page: 5495 ident: bib4 article-title: Noncognate interaction with MHC class II molecules is essential for maintenance of T cell metabolism to establish optimal memory CD4 T cell function publication-title: J. Immunol. – volume: 325 start-page: 1006 year: 2009 end-page: 1010 ident: bib10 article-title: Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation publication-title: Science – volume: 178 start-page: 4027 year: 2007 end-page: 4031 ident: bib35 article-title: Cutting Edge: Limiting amounts of IL-7 do not control contraction of CD4+ T cell responses publication-title: J. Immunol. – volume: 107 start-page: 2797 year: 2006 end-page: 2805 ident: bib22 article-title: T-bet concomitantly controls migration, survival, and effector functions during the development of Valpha14i NKT cells publication-title: Blood – volume: 11 start-page: 83 year: 2010 end-page: 89 ident: bib27 article-title: Different routes of bacterial infection induce long-lived TH1 memory cells and short-lived TH17 cells publication-title: Nat. Immunol. – volume: 52 start-page: 255 year: 2004 end-page: 266 ident: bib1 article-title: Mouse Ly-6 proteins and their extended family: markers of cell differentiation and regulators of cell signaling publication-title: Arch. Immunol. Ther. Exp. (Warsz.) – volume: 21 start-page: 53 year: 2009 end-page: 61 ident: bib19 article-title: CD4 memory T cells: what are they and what can they do? publication-title: Semin. Immunol. – year: 2010 ident: bib33 article-title: R: A Language and Environment for Statistical Computing – volume: 312 start-page: 114 year: 2006 end-page: 116 ident: bib8 article-title: Naive and memory CD4+ T cell survival controlled by clonal abundance publication-title: Science – volume: 4 start-page: 1191 year: 2003 end-page: 1198 ident: bib13 article-title: Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells publication-title: Nat. Immunol. – volume: 327 start-page: 1098 year: 2010 end-page: 1102 ident: bib24 article-title: Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells publication-title: Science – volume: 101 start-page: 9357 year: 2004 end-page: 9362 ident: bib16 article-title: IL-7 regulates basal homeostatic proliferation of antiviral CD4+T cell memory publication-title: Proc. Natl. Acad. Sci. USA – volume: 191 start-page: 2065 year: 2000 end-page: 2074 ident: bib2 article-title: Alteration at a single amino acid residue in the T cell receptor alpha chain complementarity determining region 2 changes the differentiation of naive CD4 T cells in response to antigen from T helper cell type 1 (Th1) to Th2 publication-title: J. Exp. Med. – volume: 185 start-page: 313 year: 2010 end-page: 326 ident: bib28 article-title: In vivo regulation of Bcl6 and T follicular helper cell development publication-title: J. Immunol. – volume: 185 start-page: 2116 year: 2010 end-page: 2124 ident: bib36 article-title: STAT5 is critical to maintain effector CD8+ T cell responses publication-title: J. Immunol. – volume: 28 start-page: 533 year: 2008 end-page: 545 ident: bib37 article-title: Rapid culling of the CD4+ T cell repertoire in the transition from effector to memory publication-title: Immunity – volume: 204 start-page: 2199 year: 2007 end-page: 2211 ident: bib23 article-title: Rapid default transition of CD4 T cell effectors to functional memory cells publication-title: J. Exp. Med. – volume: 186 start-page: 2889 year: 2011 end-page: 2896 ident: bib20 article-title: Memory CD4 T cells that express CXCR5 provide accelerated help to B cells publication-title: J. Immunol. – volume: 196 start-page: 957 year: 2002 end-page: 968 ident: bib31 article-title: CD4 effector T cell subsets in the response to influenza: heterogeneity, migration, and function publication-title: J. Exp. Med. – volume: 10 start-page: 375 year: 2009 end-page: 384 ident: bib6 article-title: The function of follicular helper T cells is regulated by the strength of T cell antigen receptor binding publication-title: Nat. Immunol. – volume: 27 start-page: 281 year: 2007 end-page: 295 ident: bib11 article-title: Inflammation directs memory precursor and short-lived effector CD8(+) T cell fates via the graded expression of T-bet transcription factor publication-title: Immunity – volume: 205 start-page: 2873 year: 2008 end-page: 2886 ident: bib25 article-title: ICOS-dependent extrafollicular helper T cells elicit IgG production via IL-21 in systemic autoimmunity publication-title: J. Exp. Med. – volume: 21 start-page: 669 year: 2004 end-page: 679 ident: bib21 article-title: Clonal selection of helper T cells is determined by an affinity threshold with no further skewing of TCR binding properties publication-title: Immunity – volume: 30 start-page: 721 year: 2009 end-page: 730 ident: bib34 article-title: Professional memory CD4+ T lymphocytes preferentially reside and rest in the bone marrow publication-title: Immunity – volume: 185 start-page: 5315 year: 2010 end-page: 5325 ident: bib12 article-title: Differential localization of effector and memory CD8 T cell subsets in lymphoid organs during acute viral infection publication-title: J. Immunol. – volume: 28 start-page: 533 year: 2008 ident: 10.1016/j.immuni.2011.08.016_bib37 article-title: Rapid culling of the CD4+ T cell repertoire in the transition from effector to memory publication-title: Immunity doi: 10.1016/j.immuni.2008.02.014 – volume: 21 start-page: 53 year: 2009 ident: 10.1016/j.immuni.2011.08.016_bib19 article-title: CD4 memory T cells: what are they and what can they do? publication-title: Semin. Immunol. doi: 10.1016/j.smim.2009.02.006 – volume: 101 start-page: 9357 year: 2004 ident: 10.1016/j.immuni.2011.08.016_bib16 article-title: IL-7 regulates basal homeostatic proliferation of antiviral CD4+T cell memory publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0400640101 – volume: 186 start-page: 2889 year: 2011 ident: 10.1016/j.immuni.2011.08.016_bib20 article-title: Memory CD4 T cells that express CXCR5 provide accelerated help to B cells publication-title: J. Immunol. doi: 10.4049/jimmunol.1002955 – volume: 11 start-page: 83 year: 2010 ident: 10.1016/j.immuni.2011.08.016_bib27 article-title: Different routes of bacterial infection induce long-lived TH1 memory cells and short-lived TH17 cells publication-title: Nat. Immunol. doi: 10.1038/ni.1826 – volume: 204 start-page: 951 year: 2007 ident: 10.1016/j.immuni.2011.08.016_bib30 article-title: Antiviral CD4+ memory T cells are IL-15 dependent publication-title: J. Exp. Med. doi: 10.1084/jem.20061805 – volume: 327 start-page: 1098 year: 2010 ident: 10.1016/j.immuni.2011.08.016_bib24 article-title: Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells publication-title: Science doi: 10.1126/science.1178334 – volume: 107 start-page: 2797 year: 2006 ident: 10.1016/j.immuni.2011.08.016_bib22 article-title: T-bet concomitantly controls migration, survival, and effector functions during the development of Valpha14i NKT cells publication-title: Blood doi: 10.1182/blood-2005-08-3103 – volume: 205 start-page: 2873 year: 2008 ident: 10.1016/j.immuni.2011.08.016_bib25 article-title: ICOS-dependent extrafollicular helper T cells elicit IgG production via IL-21 in systemic autoimmunity publication-title: J. Exp. Med. doi: 10.1084/jem.20080840 – volume: 8 start-page: 753 year: 2007 ident: 10.1016/j.immuni.2011.08.016_bib5 article-title: Lymphoid reservoirs of antigen-specific memory T helper cells publication-title: Nat. Immunol. doi: 10.1038/ni1472 – volume: 185 start-page: 313 year: 2010 ident: 10.1016/j.immuni.2011.08.016_bib28 article-title: In vivo regulation of Bcl6 and T follicular helper cell development publication-title: J. Immunol. doi: 10.4049/jimmunol.0904023 – volume: 178 start-page: 5488 year: 2007 ident: 10.1016/j.immuni.2011.08.016_bib4 article-title: Noncognate interaction with MHC class II molecules is essential for maintenance of T cell metabolism to establish optimal memory CD4 T cell function publication-title: J. Immunol. doi: 10.4049/jimmunol.178.9.5488 – volume: 185 start-page: 5315 year: 2010 ident: 10.1016/j.immuni.2011.08.016_bib12 article-title: Differential localization of effector and memory CD8 T cell subsets in lymphoid organs during acute viral infection publication-title: J. Immunol. doi: 10.4049/jimmunol.1001948 – volume: 178 start-page: 4027 year: 2007 ident: 10.1016/j.immuni.2011.08.016_bib35 article-title: Cutting Edge: Limiting amounts of IL-7 do not control contraction of CD4+ T cell responses publication-title: J. Immunol. doi: 10.4049/jimmunol.178.7.4027 – volume: 52 start-page: 255 year: 2004 ident: 10.1016/j.immuni.2011.08.016_bib1 article-title: Mouse Ly-6 proteins and their extended family: markers of cell differentiation and regulators of cell signaling publication-title: Arch. Immunol. Ther. Exp. (Warsz.) – volume: 452 start-page: 356 year: 2008 ident: 10.1016/j.immuni.2011.08.016_bib7 article-title: Memory CD4 T cells emerge from effector T-cell progenitors publication-title: Nature doi: 10.1038/nature06672 – volume: 4 start-page: 1191 year: 2003 ident: 10.1016/j.immuni.2011.08.016_bib13 article-title: Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells publication-title: Nat. Immunol. doi: 10.1038/ni1009 – volume: 198 start-page: 1807 year: 2003 ident: 10.1016/j.immuni.2011.08.016_bib17 article-title: IL-7 promotes the transition of CD4 effectors to persistent memory cells publication-title: J. Exp. Med. doi: 10.1084/jem.20030725 – volume: 7 start-page: 913 year: 2001 ident: 10.1016/j.immuni.2011.08.016_bib9 article-title: Differential regulation of antiviral T-cell immunity results in stable CD8+ but declining CD4+ T-cell memory publication-title: Nat. Med. doi: 10.1038/90950 – volume: 191 start-page: 2065 year: 2000 ident: 10.1016/j.immuni.2011.08.016_bib2 article-title: Alteration at a single amino acid residue in the T cell receptor alpha chain complementarity determining region 2 changes the differentiation of naive CD4 T cells in response to antigen from T helper cell type 1 (Th1) to Th2 publication-title: J. Exp. Med. doi: 10.1084/jem.191.12.2065 – volume: 325 start-page: 1006 year: 2009 ident: 10.1016/j.immuni.2011.08.016_bib10 article-title: Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation publication-title: Science doi: 10.1126/science.1175870 – volume: 21 start-page: 289 year: 2004 ident: 10.1016/j.immuni.2011.08.016_bib26 article-title: Suppression of IL7Ralpha transcription by IL-7 and other prosurvival cytokines: a novel mechanism for maximizing IL-7-dependent T cell survival publication-title: Immunity doi: 10.1016/j.immuni.2004.07.016 – year: 2010 ident: 10.1016/j.immuni.2011.08.016_bib33 – volume: 10 start-page: 375 year: 2009 ident: 10.1016/j.immuni.2011.08.016_bib6 article-title: The function of follicular helper T cells is regulated by the strength of T cell antigen receptor binding publication-title: Nat. Immunol. doi: 10.1038/ni.1704 – volume: 5 start-page: 919 year: 2004 ident: 10.1016/j.immuni.2011.08.016_bib18 article-title: Serine protease inhibitor 2A is a protective factor for memory T cell development publication-title: Nat. Immunol. doi: 10.1038/ni1107 – volume: 27 start-page: 281 year: 2007 ident: 10.1016/j.immuni.2011.08.016_bib11 article-title: Inflammation directs memory precursor and short-lived effector CD8(+) T cell fates via the graded expression of T-bet transcription factor publication-title: Immunity doi: 10.1016/j.immuni.2007.07.010 – volume: 21 start-page: 669 year: 2004 ident: 10.1016/j.immuni.2011.08.016_bib21 article-title: Clonal selection of helper T cells is determined by an affinity threshold with no further skewing of TCR binding properties publication-title: Immunity doi: 10.1016/j.immuni.2004.09.008 – volume: 312 start-page: 114 year: 2006 ident: 10.1016/j.immuni.2011.08.016_bib8 article-title: Naive and memory CD4+ T cell survival controlled by clonal abundance publication-title: Science doi: 10.1126/science.1124228 – volume: 185 start-page: 2116 year: 2010 ident: 10.1016/j.immuni.2011.08.016_bib36 article-title: STAT5 is critical to maintain effector CD8+ T cell responses publication-title: J. Immunol. doi: 10.4049/jimmunol.1000842 – volume: 180 start-page: 5309 year: 2008 ident: 10.1016/j.immuni.2011.08.016_bib3 article-title: Formation of IL-7Ralphahigh and IL-7Ralphalow CD8 T cells during infection is regulated by the opposing functions of GABPalpha and Gfi-1 publication-title: J. Immunol. doi: 10.4049/jimmunol.180.8.5309 – volume: 10 start-page: 5150 year: 1990 ident: 10.1016/j.immuni.2011.08.016_bib14 article-title: Characterization of promoter elements of an interferon-inducible Ly-6E/A differentiation antigen, which is expressed on activated T cells and hematopoietic stem cells publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.10.10.5150 – volume: 196 start-page: 957 year: 2002 ident: 10.1016/j.immuni.2011.08.016_bib31 article-title: CD4 effector T cell subsets in the response to influenza: heterogeneity, migration, and function publication-title: J. Exp. Med. doi: 10.1084/jem.20021052 – volume: 286 start-page: 1381 year: 1999 ident: 10.1016/j.immuni.2011.08.016_bib32 article-title: Class II-independent generation of CD4 memory T cells from effectors publication-title: Science doi: 10.1126/science.286.5443.1381 – volume: 198 start-page: 1797 year: 2003 ident: 10.1016/j.immuni.2011.08.016_bib15 article-title: Interleukin 7 regulates the survival and generation of memory CD4 cells publication-title: J. Exp. Med. doi: 10.1084/jem.20030735 – volume: 98 start-page: 8744 year: 2001 ident: 10.1016/j.immuni.2011.08.016_bib29 article-title: How alpha beta T cells deal with induced TCR alpha ablation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.141218898 – volume: 204 start-page: 2199 year: 2007 ident: 10.1016/j.immuni.2011.08.016_bib23 article-title: Rapid default transition of CD4 T cell effectors to functional memory cells publication-title: J. Exp. Med. doi: 10.1084/jem.20070041 – volume: 30 start-page: 721 year: 2009 ident: 10.1016/j.immuni.2011.08.016_bib34 article-title: Professional memory CD4+ T lymphocytes preferentially reside and rest in the bone marrow publication-title: Immunity doi: 10.1016/j.immuni.2009.03.015 – reference: 22035843 - Immunity. 2011 Oct 28;35(4):496-8. doi: 10.1016/j.immuni.2011.10.001. |
SSID | ssj0014590 |
Score | 2.4957075 |
Snippet | CD4
+ T cells differentiate into multiple effector types, but it is unclear how they form memory T cells during infection in vivo. Profiling virus-specific CD4... CD4(+) T cells differentiate into multiple effector types, but it is unclear how they form memory T cells during infection in vivo. Profiling virus-specific... CD4+T cells differentiate into multiple effector types, but it is unclear how they form memory T cells during infection in vivo. Profiling virus-specific CD4+T... CD4(+) T cells differentiate into multiple effector types, but it is unclear how they form memory T cells during infection in vivo. Profiling virus-specific... CD4 + T cells differentiate into multiple effector types, but it is unclear how they form memory T cells during infection in vivo. Profiling virus-specific CD4... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 633 |
SubjectTerms | Animals Antigens, Ly - genetics Antigens, Ly - immunology Cell Proliferation Gene expression Gene Expression Regulation Homeostasis Immunologic Memory Infections Lymphocytic choriomeningitis virus Mice Mice, Inbred C57BL T cell receptors T-bet Transcription Factor T-Box Domain Proteins - genetics T-Box Domain Proteins - immunology Th1 Cells - cytology Th1 Cells - immunology Th1 Cells - virology Viral infections |
Title | Differential Expression of Ly6C and T-bet Distinguish Effector and Memory Th1 CD4 + Cell Properties during Viral Infection |
URI | https://dx.doi.org/10.1016/j.immuni.2011.08.016 https://www.ncbi.nlm.nih.gov/pubmed/22018471 https://www.proquest.com/docview/1514860488 https://www.proquest.com/docview/901303680 https://pubmed.ncbi.nlm.nih.gov/PMC3444169 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemIRAvCMZXYUx-4A1ZtWPHrR-3dNNgFCEo0DfLcbw1qHKnfkgrfz1nxwkUkCbxGtvRxec7_xz_7g6h17mh1ilrCVeWEiE5JSWjlljDqjxzWZXJEDs8_iDPv4h303y6h4o2FibQKpPvb3x69NbpST_NZv-6rvufA5UQDuE8Jj0Dpwt-mIthDOKbnnQ3CSJXtOMdQu82fC5yvOoYg_ErkWeoev7v7elv-Pkni_K3bensIXqQ8CQ-bkR-hPacP0B3mwqT2wN0b5zuzh-jH6NUCwVseo5PbxID1uPFJX6_lQU2vsITUro1HgXD91ebejXDTXrjxTI2jwMvd4snM4aLkcBvcOHmc_wx_NBfhsysuIl6xF9rEBW_TUQv_wRNzk4nxTlJlReIFYquiQtA0g0AfeVSMeM4aE5xyy6FKlXlnGJ2IIxjrLSA0IWSwnBnmVFw-qHU8Kdo3y-8e44w4E_BXVlWkpUC0IIaAr5gJrNwULIA1nqIt_OtbcpKHopjzHVLP_uuGy3poCUdamYy2UOkG3XdZOW4pf-gVaXeWV0aNo5bRh62mtfJulcaUFKo3QW-r4dw1wx2GS5bjHeLzUorGtHBkPbQs2addJJm8P4ACkCqnRXUdQgpv3dbfD2Lqb-5APgq1Yv__p6X6H6WWIzZ8BDtr5cb9wpg1bo8QneOLz59uziK9vMTdP4htw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB4ti3hcECyvwgI-cENW7dhJ6yOku2qhXSERUG-W43hpUJWu-pAov55x4gQKSCtxje1o4vGMP8ffzAC8jg2zTllLhbKMykQwmnNmqTW8iCMXFVHiY4dnF8n4s3w_j-dHkLaxMJ5WGXx_49Nrbx2e9MNs9q_Ksv_JUwnxEC7qpGfodG_ATUQDA1-_YTJ_110lyFixjniI3dv4uZrkVdZBGL8yefqy5__en_7Gn3_SKH_bl87vw70AKMnbRuYHcOSqE7jVlJjcn8DtWbg8fwg_RqEYChr1kpx9DxTYiqwuyXSfpMRUBclo7rZk5C2_-rorNwvS5DderevmmSfm7km24CQdSfKGpG65JB_9H_21T81KmrBH8qVEUckkML2qR5Cdn2XpmIbSC9RKxbbUeSTpBgi_4kRx4wSqTgnLL6XKVeGc4nYgjeM8twjRpUqkEc5yo_D4w5gRj-G4WlXuKRAEoFK4PC8SnkuEC2qIAIObyOJJySJa64Fo51vbkJbcV8dY6pZ_9k03WtJeS9oXzeRJD2g36qpJy3FN_0GrSn2wvDTuHNeMPG01r4N5bzTCJF-8C51fD0jXjIbpb1tM5Va7jVashgdD1oMnzTrpJI3w_R4VoFQHK6jr4HN-H7ZU5aLO_S0k4tdEPfvv73kFd8bZbKqnk4sPz-FuFCiN0fAUjrfrnXuBGGubv6xt6CfhjyMz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+expression+of+Ly6C+and+T-bet+distinguish+effector+and+memory+Th1+CD4%28%2B%29+cell+properties+during+viral+infection&rft.jtitle=Immunity+%28Cambridge%2C+Mass.%29&rft.au=Marshall%2C+Heather+D&rft.au=Chandele%2C+Anmol&rft.au=Jung%2C+Yong+Woo&rft.au=Meng%2C+Hailong&rft.date=2011-10-28&rft.eissn=1097-4180&rft.volume=35&rft.issue=4&rft.spage=633&rft_id=info:doi/10.1016%2Fj.immuni.2011.08.016&rft_id=info%3Apmid%2F22018471&rft.externalDocID=22018471 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-7613&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-7613&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-7613&client=summon |