Superparamagnetic particle dynamics and mixing in a rotating capillary tube with a stationary magnetic field

The dynamics of superparamagnetic particles subject to competing magnetic and viscous drag forces have been examined with a uniform, stationary, external magnetic field. In this approach, competing drag and magnetic forces were created in a fluid suspension of superparamagnetic particles that was co...

Full description

Saved in:
Bibliographic Details
Published inMicrofluidics and nanofluidics Vol. 13; no. 3; pp. 461 - 468
Main Authors Lee, Jun-Tae, Abid, Aamir, Cheung, Ka Ho, Sudheendra, L., Kennedy, Ian M.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer-Verlag 01.09.2012
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The dynamics of superparamagnetic particles subject to competing magnetic and viscous drag forces have been examined with a uniform, stationary, external magnetic field. In this approach, competing drag and magnetic forces were created in a fluid suspension of superparamagnetic particles that was confined in a capillary tube; competing viscous drag and magnetic forces were established by rotating the tube. A critical Mason number was determined for conditions under which the rotation of the capillary prevents the formation of chains from individual particles. The statistics of chain length was investigated by image analysis while varying parameters such as the rotation speed and the viscosity of the liquid. The measurements showed that the rate of particle chain formation was decreased with increased viscosity and rotation speed; the particle dynamics could be quantified by the same dimensionless Mason number that has been demonstrated for rotating magnetic fields. The potential for enhancement of mixing in a bioassay was assessed using a fast chemical reaction that was diffusion-limited. Reducing the Mason number below the critical value, so that chains were formed in the fluid, gave rise to a modest improvement in the time to completion of the reaction.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:1613-4982
1613-4990
DOI:10.1007/s10404-012-0981-z