Characterization of a variant CD4 molecule in Japanese Black cattle

•PBMCs from Japanese Black calves were analyzed using two anti-CD4 mAbs.•A CD4 variant was found to contain 4 point mutations.•The 4 point mutations resulted in 3 amino acid substitutions.•The mutations did not affect lymphocyte functions. Monoclonal antibodies (mAbs) that recognize cluster of diffe...

Full description

Saved in:
Bibliographic Details
Published inVeterinary Immunology and Immunopathology Vol. 232; p. 110167
Main Authors Kato-Mori, Yuko, Okamura, Taku, Kawashita, Norihito, Hagiwara, Katsuro
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.02.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:•PBMCs from Japanese Black calves were analyzed using two anti-CD4 mAbs.•A CD4 variant was found to contain 4 point mutations.•The 4 point mutations resulted in 3 amino acid substitutions.•The mutations did not affect lymphocyte functions. Monoclonal antibodies (mAbs) that recognize cluster of differentiation (CD) molecules on lymphocytes are useful tools for the study of different lymphocyte subsets in flow cytometry (FCM) analysis. CD4 is a glycoprotein found on the surfaces of helper T cells, monocytes, macrophages, and dendritic cells. In this study, we describe Japanese Black (JB) calves in a farm whose peripheral blood mononuclear cells (PBMCs) did not react with a CD4-specific mAb. To identify calves with PBMCs with low mAb reactivity, PBMCs from 21 JB calves (1–12 months of age) bred at the same farm were examined using two different bovine CD4 mAbs (clones #CC8 and #CACT138A). FCM analysis indicated that the calves fell into two groups based on reactivity against the two mAbs, i.e., double-positive (DP) calves, whose PBMCs were recognized by both mAbs clones, and single-positive (SP) calves, whose PBMCs were only recognized by #CACT138A. PBMCs from seven calves were not recognized by #CC8, although they had normal reactivity with another mAb, #CACT138A. Sequencing analysis of the CD4 gene in these calves revealed four nucleotide substitutions (G918 T, A930C, G970A, and G1074A) in the coding region in the SP group when compared to the DP group. Three of the four mutations were associated with amino acid substitution (Q306H, K310 N, and A324 T). The substitution at A324 T was located in the D4 domain of CD4 gene. Homology modeling based on the amino acid sequences revealed that the surface structure of this part of the molecule was significantly different between the SP and the DP groups. Therefore, the epitope recognized by the #CC8 CD4 mAb was altered in calves with this genetic mutation, and this led to the low reactivity of the PBMCs from calves in the SP group aginst the #CC8 mAb. In conclusion, this is the first study to identify CD4 variants in JB cattle. We confirmed that the variants did not affect lymphocyte functions, such as mitogen stimulation or lipopolysaccharide-induced cytokine gene expression.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0165-2427
1873-2534
1873-2534
DOI:10.1016/j.vetimm.2020.110167