Towards accurate, automatic segmentation of the hippocampus and amygdala from MRI by augmenting ANIMAL with a template library and label fusion

We describe progress towards fully automatic segmentation of the hippocampus (HC) and amygdala (AG) in human subjects from MRI data. Three methods are described and tested with a set of MRIs from 80 young normal controls, using manual labeling of the HC and AG as a gold standard. The methods include...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 52; no. 4; pp. 1355 - 1366
Main Authors Collins, D. Louis, Pruessner, Jens C.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.10.2010
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We describe progress towards fully automatic segmentation of the hippocampus (HC) and amygdala (AG) in human subjects from MRI data. Three methods are described and tested with a set of MRIs from 80 young normal controls, using manual labeling of the HC and AG as a gold standard. The methods include: 1) our ANIMAL atlas-based method that uses non-linear registration to a pre-labeled non-linear average template (ICBM152). HC and AG labels, defined on the template are mapped through the inverse transformation to segment these structures on the subject's MRI. 2) We select the most similar MRI from the set of 80 labeled datasets to use as a template in the standard ANIMAL segmentation scheme. 3) We use label fusion techniques to combine segmentations from the ‘n’ most similar templates. The label fusion technique yields an optimal median Dice Kappa of 0.886 and similarity of 0.795 for HC, and 0.826 and 0.703 respectively for AG.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1053-8119
1095-9572
1095-9572
DOI:10.1016/j.neuroimage.2010.04.193