Semi-automated Anatomical Labeling and Inter-subject Warping of High-Density Intracranial Recording Electrodes in Electrocorticography
In this article, we introduce img_pipe, our open source python package for preprocessing of imaging data for use in intracranial electrocorticography (ECoG) and intracranial stereo-EEG analyses. The process of electrode localization, labeling, and warping for use in ECoG currently varies widely acro...
Saved in:
Published in | Frontiers in neuroinformatics Vol. 11; p. 62 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
31.10.2017
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this article, we introduce img_pipe, our open source python package for preprocessing of imaging data for use in intracranial electrocorticography (ECoG) and intracranial stereo-EEG analyses. The process of electrode localization, labeling, and warping for use in ECoG currently varies widely across laboratories, and it is usually performed with custom, lab-specific code. This python package aims to provide a standardized interface for these procedures, as well as code to plot and display results on 3D cortical surface meshes. It gives the user an easy interface to create anatomically labeled electrodes that can also be warped to an atlas brain, starting with only a preoperative T1 MRI scan and a postoperative CT scan. We describe the full capabilities of our imaging pipeline and present a step-by-step protocol for users. |
---|---|
AbstractList | In this article we introduce img_pipe, our open source python package for preprocessing of imaging data for use in intracranial electrocorticography (ECoG) and intracranial stereo-EEG analyses. The process of electrode localization, labeling, and warping for use in ECoG currently varies widely across laboratories, and it is usually performed with custom, lab-specific code. This python package aims to provide a standardized interface for these procedures, as well as code to plot and display results on 3D cortical surface meshes. It gives the user an easy interface to create anatomically labeled electrodes that can also be warped to an atlas brain, starting with only a preoperative T1 MRI scan and a postoperative CT scan. We describe the full capabilities of our imaging pipeline and present a step-by-step protocol for users. In this article, we introduce img_pipe , our open source python package for preprocessing of imaging data for use in intracranial electrocorticography (ECoG) and intracranial stereo-EEG analyses. The process of electrode localization, labeling, and warping for use in ECoG currently varies widely across laboratories, and it is usually performed with custom, lab-specific code. This python package aims to provide a standardized interface for these procedures, as well as code to plot and display results on 3D cortical surface meshes. It gives the user an easy interface to create anatomically labeled electrodes that can also be warped to an atlas brain, starting with only a preoperative T1 MRI scan and a postoperative CT scan. We describe the full capabilities of our imaging pipeline and present a step-by-step protocol for users. In this article, we introduce img_pipe, our open source python package for preprocessing of imaging data for use in intracranial electrocorticography (ECoG) and intracranial stereo-EEG analyses. The process of electrode localization, labeling, and warping for use in ECoG currently varies widely across laboratories, and it is usually performed with custom, lab-specific code. This python package aims to provide a standardized interface for these procedures, as well as code to plot and display results on 3D cortical surface meshes. It gives the user an easy interface to create anatomically labeled electrodes that can also be warped to an atlas brain, starting with only a preoperative T1 MRI scan and a postoperative CT scan. We describe the full capabilities of our imaging pipeline and present a step-by-step protocol for users.In this article, we introduce img_pipe, our open source python package for preprocessing of imaging data for use in intracranial electrocorticography (ECoG) and intracranial stereo-EEG analyses. The process of electrode localization, labeling, and warping for use in ECoG currently varies widely across laboratories, and it is usually performed with custom, lab-specific code. This python package aims to provide a standardized interface for these procedures, as well as code to plot and display results on 3D cortical surface meshes. It gives the user an easy interface to create anatomically labeled electrodes that can also be warped to an atlas brain, starting with only a preoperative T1 MRI scan and a postoperative CT scan. We describe the full capabilities of our imaging pipeline and present a step-by-step protocol for users. |
Author | Chang, Edward F. Hamilton, Liberty S. Chang, David L. Lee, Morgan B. |
AuthorAffiliation | 2 Center for Integrative Neuroscience, University of California, San Francisco , San Francisco, CA , United States 1 Department of Neurosurgery, University of California, San Francisco , San Francisco, CA , United States |
AuthorAffiliation_xml | – name: 2 Center for Integrative Neuroscience, University of California, San Francisco , San Francisco, CA , United States – name: 1 Department of Neurosurgery, University of California, San Francisco , San Francisco, CA , United States |
Author_xml | – sequence: 1 givenname: Liberty S. surname: Hamilton fullname: Hamilton, Liberty S. – sequence: 2 givenname: David L. surname: Chang fullname: Chang, David L. – sequence: 3 givenname: Morgan B. surname: Lee fullname: Lee, Morgan B. – sequence: 4 givenname: Edward F. surname: Chang fullname: Chang, Edward F. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29163118$$D View this record in MEDLINE/PubMed |
BookMark | eNp1Uk2L2zAUNGVL96O991QMvfTiVLItyb4Ulu22GwgU-kGP4ll6chQcKZXsQv5Af3flZFN2F3rSk97MaKQ3l9mZ8w6z7DUli6pq2vfGWWcWJaFiQQjh5bPsgnJeFoy2_OxBfZ5dxriZEZyJF9l52VJeUdpcZH--4dYWMI1-CyPq_NpBKq2CIV9Bh4N1fQ5O50s3Yiji1G1QjflPCLu5401-Z_t18RFdtON-RgVQAZxN_K-ofNAz7HZIpOA1xty60y41R6t8H2C33r_MnhsYIr66X6-yH59uv9_cFasvn5c316tC1S0ZCyZIJRAMVww6o6kgSLlmoE0HHKuKEk1NWRKoFdO1bjtoGU81r4TpdFtWV9nyqKs9bOQu2C2EvfRg5eHAh17CbGtAiZ1hTHPCoa1qgaQVUGOXbmaNMU3DktaHo9Zu6raoFc6PHx6JPu44u5a9_y0ZF7RuaBJ4dy8Q_K8J4yi3NiocBnDopyjT4ETNS9ZUCfr2CXTjp-DSV8mybGtKhKhIQr156OifldO4E4AfASr4GAMaqewIo_WzQTtISuScK3nIlZxzJQ-5SkTyhHjS_i_lL0yE1FA |
CitedBy_id | crossref_primary_10_1016_j_celrep_2024_114924 crossref_primary_10_7554_eLife_53051 crossref_primary_10_1038_s41598_023_40282_7 crossref_primary_10_1016_j_neuroimage_2019_03_061 crossref_primary_10_1038_s41598_021_02307_x crossref_primary_10_1073_pnas_2322869121 crossref_primary_10_1016_j_cell_2021_07_019 crossref_primary_10_1073_pnas_2101777118 crossref_primary_10_1038_s41746_024_01115_7 crossref_primary_10_1016_j_neuroimage_2020_117341 crossref_primary_10_1016_j_cell_2018_05_016 crossref_primary_10_1038_s41562_022_01334_6 crossref_primary_10_1093_brain_awab380 crossref_primary_10_1038_s41597_022_01542_9 crossref_primary_10_1016_j_neuron_2023_04_004 crossref_primary_10_1038_s41586_019_1119_1 crossref_primary_10_1162_jocn_a_01450 crossref_primary_10_1038_s41593_023_01338_z crossref_primary_10_1016_j_procs_2023_01_082 crossref_primary_10_1016_j_neuroimage_2022_119438 crossref_primary_10_1523_ENEURO_0328_23_2023 crossref_primary_10_1016_j_jocn_2019_03_061 crossref_primary_10_3389_fnins_2019_00832 crossref_primary_10_1038_s42003_021_02578_0 crossref_primary_10_1073_pnas_2207831120 crossref_primary_10_3389_fnins_2021_748165 crossref_primary_10_1088_1741_2552_ad851c crossref_primary_10_1016_j_neuron_2021_10_002 crossref_primary_10_1038_s41586_023_06443_4 crossref_primary_10_1016_j_ebiom_2025_105606 crossref_primary_10_1126_sciadv_adk0010 crossref_primary_10_1016_j_neuroimage_2022_119389 crossref_primary_10_1016_j_xpro_2025_103650 crossref_primary_10_1093_neuros_nyy592 crossref_primary_10_1523_JNEUROSCI_1109_24_2024 crossref_primary_10_1038_s41467_023_43257_4 crossref_primary_10_3389_fnins_2023_1283491 crossref_primary_10_1111_epi_17781 crossref_primary_10_1080_02643294_2018_1472559 crossref_primary_10_3389_fnhum_2021_746499 crossref_primary_10_1038_s42003_025_07862_x crossref_primary_10_1111_epi_17863 crossref_primary_10_1016_j_jneumeth_2019_108396 crossref_primary_10_1088_1741_2552_ab7c8e crossref_primary_10_3389_fnins_2022_795417 crossref_primary_10_1126_sciadv_adh0478 crossref_primary_10_1038_s41593_023_01468_4 crossref_primary_10_1016_j_neuroimage_2018_06_050 crossref_primary_10_1088_1741_2552_aaab6f crossref_primary_10_3171_2019_11_FOCUS19696 crossref_primary_10_1093_brain_awab125 crossref_primary_10_1111_epi_16580 crossref_primary_10_1016_j_heares_2023_108838 crossref_primary_10_1126_sciadv_aay6279 crossref_primary_10_1016_j_neuron_2020_02_012 crossref_primary_10_1093_braincomms_fcaf020 crossref_primary_10_1111_epi_16841 crossref_primary_10_1088_1741_2552_ad593a crossref_primary_10_3389_fninf_2022_788685 crossref_primary_10_1088_1741_2552_abad7a crossref_primary_10_1016_j_cell_2025_02_001 crossref_primary_10_1038_s41467_023_42175_9 crossref_primary_10_1038_s41467_021_21430_x crossref_primary_10_21105_joss_03897 crossref_primary_10_3389_fninf_2021_773890 crossref_primary_10_1016_j_cub_2018_04_033 crossref_primary_10_1111_cns_14155 crossref_primary_10_3389_fnhum_2018_00360 crossref_primary_10_1093_brain_awac121 crossref_primary_10_1038_s41467_019_10994_4 |
Cites_doi | 10.1155/2011/156869 10.1016/j.neuron.2015.03.037 10.1109/TMI.2008.2004426 10.1101/069179 10.1088/1741-2560/13/5/056004 10.1093/cercor/bhg087 10.1101/097485 10.1016/j.jneumeth.2008.06.028 10.1016/j.neuroimage.2011.11.046 10.1523/JNEUROSCI.0156-16.2016 10.1016/j.jneumeth.2009.10.005 10.1016/j.neuroimage.2006.01.021 10.1016/j.jneumeth.2007.01.019 10.1038/ncomms13619 10.1016/j.neuroimage.2012.06.039 10.1126/science.aam8577 10.1088/1741-2560/13/5/056013 10.1007/s11548-016-1504-2 |
ContentType | Journal Article |
Copyright | 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2017 Hamilton, Chang, Lee and Chang. 2017 Hamilton, Chang, Lee and Chang |
Copyright_xml | – notice: 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2017 Hamilton, Chang, Lee and Chang. 2017 Hamilton, Chang, Lee and Chang |
DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3389/fninf.2017.00062 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1662-5196 |
ExternalDocumentID | oai_doaj_org_article_ebf55d606a9347e097a4eb6c558ff885 PMC5671481 29163118 10_3389_fninf_2017_00062 |
Genre | Journal Article |
GeographicLocations | United States--US San Francisco California California |
GeographicLocations_xml | – name: San Francisco California – name: United States--US – name: California |
GrantInformation_xml | – fundername: National Institutes of Health grantid: F32 DC014192-01; DP2-OD00862; R01-DC012379 – fundername: Defense Advanced Research Projects Agency grantid: W911NF-14-2-0043 |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAKPC AAYXX ABUWG ACGFO ACGFS ACXDI ADBBV ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS ARCSS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DWQXO E3Z F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM TR2 C1A IAO IEA IHR IPNFZ ISR NPM RIG 3V. 7XB 8FK PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c490t-57037eaf6c5abfd170e16d5adfba6e3310d1f220a4c5d4d9ba9564c5637fbd923 |
IEDL.DBID | M48 |
ISSN | 1662-5196 |
IngestDate | Wed Aug 27 01:23:52 EDT 2025 Thu Aug 21 14:01:05 EDT 2025 Fri Jul 11 02:06:20 EDT 2025 Fri Jul 25 11:52:08 EDT 2025 Wed Feb 19 02:43:02 EST 2025 Tue Jul 01 01:13:20 EDT 2025 Thu Apr 24 23:09:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | epilepsy open science electrocorticography image coregistration electrode localization intracranial recordings subdural electrodes surgery |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c490t-57037eaf6c5abfd170e16d5adfba6e3310d1f220a4c5d4d9ba9564c5637fbd923 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Edited by: Satrajit S. Ghosh, Massachusetts Institute of Technology, United States Reviewed by: Andrei Irimia, University of Southern California, United States; Michael S. Beauchamp, Baylor College of Medicine, United States |
OpenAccessLink | https://www.proquest.com/docview/2294107730?pq-origsite=%requestingapplication% |
PMID | 29163118 |
PQID | 2294107730 |
PQPubID | 4424404 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ebf55d606a9347e097a4eb6c558ff885 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5671481 proquest_miscellaneous_1967462583 proquest_journals_2294107730 pubmed_primary_29163118 crossref_citationtrail_10_3389_fninf_2017_00062 crossref_primary_10_3389_fninf_2017_00062 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-10-31 |
PublicationDateYYYYMMDD | 2017-10-31 |
PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-31 day: 31 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Lausanne |
PublicationTitle | Frontiers in neuroinformatics |
PublicationTitleAlternate | Front Neuroinform |
PublicationYear | 2017 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | LaPlante (B12) 2016; 12 Moses (B15) 2016; 13 B11 Postelnicu (B19) 2009; 28 Muller (B16) Muller (B17); 13 Yang (B22) 2012; 63 Groppe (B8) 2016 Oostenveld (B18) 2011; 2011 Ramachandran (B20) 2001 Hamilton (B9) 2016 Dichter (B5) 2016; 36 Hermes (B10) 2010; 185 Leonard (B13) 2016; 7 Fischl (B7) 2004; 14 Desikan (B4) 2006; 31 Dalal (B3) 2008; 174 Chang (B2) 2015; 86 Tang (B21) 2017; 357 Dykstra (B6) 2012; 59 Miller (B14) 2007; 162 Ashburner (B1) 1997 15891163 - AJNR Am J Neuroradiol. 2005 May;26(5):1078-83 27484713 - J Neural Eng. 2016 Oct;13(5):056004 22155045 - Neuroimage. 2012 Feb 15;59(4):3563-70 21253357 - Comput Intell Neurosci. 2011;2011:156869 27413155 - J Neurosci. 2016 Jul 13;36(28):7453-63 16530430 - Neuroimage. 2006 Jul 1;31(3):968-80 17343918 - J Neurosci Methods. 2007 May 15;162(1-2):303-8 27996973 - Nat Commun. 2016 Dec 20;7:13619 22759995 - Neuroimage. 2012 Oct 15;63(1):157-165 27578414 - J Neural Eng. 2016 Oct;13(5):056013 28839071 - Science. 2017 Aug 25;357(6353):797-801 28192130 - J Neurosci Methods. 2017 Apr 1;281:40-48 28268617 - Conf Proc IEEE Eng Med Biol Soc. 2016 Aug;2016:1528-1531 25856487 - Neuron. 2015 Apr 8;86(1):68-78 19836416 - J Neurosci Methods. 2010 Jan 15;185(2):293-8 19273000 - IEEE Trans Med Imaging. 2009 Apr;28(4):508-22 18657573 - J Neurosci Methods. 2008 Sep 15;174(1):106-15 27915398 - Int J Comput Assist Radiol Surg. 2017 Oct;12 (10 ):1829-1837 14654453 - Cereb Cortex. 2004 Jan;14(1):11-22 |
References_xml | – volume: 2011 start-page: 156869 year: 2011 ident: B18 article-title: FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data publication-title: Comput. Intell. Neurosci doi: 10.1155/2011/156869 – ident: B11 – volume: 86 start-page: 68 year: 2015 ident: B2 article-title: Towards large-scale, human-based, mesoscopic neurotechnologies publication-title: Neuron doi: 10.1016/j.neuron.2015.03.037 – volume: 28 start-page: 508 year: 2009 ident: B19 article-title: Combined volumetric and surface registration publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2008.2004426 – start-page: 1 year: 2016 ident: B8 article-title: iELVis: an open source MATLAB toolbox for localizing and visualizing human intracranial electrode data publication-title: bioRxiv doi: 10.1101/069179 – volume: 13 start-page: 1 year: 2016 ident: B15 article-title: Neural speech recognition: continuous phoneme decoding using spatiotemporal representations of human cortical activity publication-title: J. Neural Eng doi: 10.1088/1741-2560/13/5/056004 – volume: 14 start-page: 11 year: 2004 ident: B7 article-title: Automatically parcellating the human cerebral cortex publication-title: Cereb. Cortex doi: 10.1093/cercor/bhg087 – year: 2016 ident: B9 article-title: Parallel streams define the temporal dynamics of speech processing across human auditory cortex publication-title: bioRxiv doi: 10.1101/097485 – start-page: 1528 volume-title: IEEE 38th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC) ident: B16 article-title: Thin-film, high-density micro-electrocorticographic decoding of a human cortical gyrus – volume: 174 start-page: 106 year: 2008 ident: B3 article-title: Localization of neurosurgically implanted electrodes via photograph-MRI-radiograph coregistration publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2008.06.028 – volume: 59 start-page: 3563 year: 2012 ident: B6 article-title: Individualized localization and cortical surface-based registration of intracranial electrodes publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.11.046 – volume: 36 start-page: 7453 year: 2016 ident: B5 article-title: Dynamic structure of neural variability in the cortical representation of speech sounds publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0156-16.2016 – volume: 185 start-page: 293 year: 2010 ident: B10 article-title: Automated electrocorticographic electrode localization on individually rendered brain surfaces publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2009.10.005 – volume: 31 start-page: 968 year: 2006 ident: B4 article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.01.021 – volume: 162 start-page: 303 year: 2007 ident: B14 article-title: Cortical electrode localization from X-rays and simple mapping for electrocorticographic research: The “Location on Cortex” (LOC) package for MATLAB publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2007.01.019 – volume-title: Annual. CFD Symposium year: 2001 ident: B20 article-title: MayaVi: a free tool for CFD data visualization – volume: 7 start-page: 13619 year: 2016 ident: B13 article-title: Perceptual restoration of masked speech in human cortex publication-title: Nat. Commun doi: 10.1038/ncomms13619 – volume: 63 start-page: 157 year: 2012 ident: B22 article-title: Localization of dense intracranial electrode arrays using magnetic resonance imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.06.039 – volume: 357 start-page: 797 year: 2017 ident: B21 article-title: Intonational speech prosody encoding in human auditory cortex publication-title: Science doi: 10.1126/science.aam8577 – start-page: 43 year: 1997 ident: B1 article-title: Spatial transformation of images publication-title: Hum. Brain Funct – volume: 13 start-page: 56013 ident: B17 article-title: Spatial resolution dependence on spectral frequency in human speech cortex electrocorticography publication-title: J. Neural Eng doi: 10.1088/1741-2560/13/5/056013 – volume: 12 start-page: 1829 year: 2016 ident: B12 article-title: The interactive electrode localization utility: software for automatic sorting and labeling of intracranial subdural electrodes publication-title: Int. J. Comput. Assist. Radiol. Surg doi: 10.1007/s11548-016-1504-2 – reference: 27578414 - J Neural Eng. 2016 Oct;13(5):056013 – reference: 19836416 - J Neurosci Methods. 2010 Jan 15;185(2):293-8 – reference: 21253357 - Comput Intell Neurosci. 2011;2011:156869 – reference: 19273000 - IEEE Trans Med Imaging. 2009 Apr;28(4):508-22 – reference: 25856487 - Neuron. 2015 Apr 8;86(1):68-78 – reference: 27413155 - J Neurosci. 2016 Jul 13;36(28):7453-63 – reference: 15891163 - AJNR Am J Neuroradiol. 2005 May;26(5):1078-83 – reference: 28192130 - J Neurosci Methods. 2017 Apr 1;281:40-48 – reference: 28839071 - Science. 2017 Aug 25;357(6353):797-801 – reference: 27484713 - J Neural Eng. 2016 Oct;13(5):056004 – reference: 22759995 - Neuroimage. 2012 Oct 15;63(1):157-165 – reference: 14654453 - Cereb Cortex. 2004 Jan;14(1):11-22 – reference: 18657573 - J Neurosci Methods. 2008 Sep 15;174(1):106-15 – reference: 27996973 - Nat Commun. 2016 Dec 20;7:13619 – reference: 17343918 - J Neurosci Methods. 2007 May 15;162(1-2):303-8 – reference: 28268617 - Conf Proc IEEE Eng Med Biol Soc. 2016 Aug;2016:1528-1531 – reference: 16530430 - Neuroimage. 2006 Jul 1;31(3):968-80 – reference: 22155045 - Neuroimage. 2012 Feb 15;59(4):3563-70 – reference: 27915398 - Int J Comput Assist Radiol Surg. 2017 Oct;12 (10 ):1829-1837 |
SSID | ssj0062657 |
Score | 2.4081502 |
Snippet | In this article, we introduce img_pipe, our open source python package for preprocessing of imaging data for use in intracranial electrocorticography (ECoG)... In this article we introduce img_pipe, our open source python package for preprocessing of imaging data for use in intracranial electrocorticography (ECoG) and... In this article, we introduce img_pipe , our open source python package for preprocessing of imaging data for use in intracranial electrocorticography (ECoG)... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 62 |
SubjectTerms | Automation Cloning Computed tomography Cortex EEG electrocorticography electrode localization Electrodes Epilepsy image coregistration Intracranial recording intracranial recordings Labeling Localization Magnetic resonance imaging Medical imaging Neuroimaging Neuroscience NMR Nuclear magnetic resonance Operating systems Review boards Software packages surgery |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NbxshEEVRTr1EbdO02yYVlapIPSDvsrCYYz4VRWkuadTcECygWmpw5Y9D_kB_d2ZgbcVR1V56s81YYpmBeQ9mH4R89kG32qmaSSU0Ezw4mFK9Yry1romae51PTL9edxe34vJO3j256gtrwoo8cBm4UXBRSg8w2-pWqFBrZUVwXS_lOMbxOKuXQs5bkamyBgNKl6ocSgIF06OYwF1Yx5X1Cju-kYSyVv-fAObzOsknief8JdkZECM9Kj19RbZCek12jxKw5fsHekhzDWfeHN8lv2_C_YTZJTQBhvS0WKEf6JV1-dVzapOneR-QzZcOd2HodzvDt6boNFIs-2CnWNS-eECrme0hmUGM0sJT0eys3Jzjw5xO0uobNEL_Bv3rN-T2_OzbyQUbblpgvdD1gqEMlwo2wrBaF32j6tB0Xlofne1CCxDQN5Hz2opeeuG1s0Cr4HPXqug8YMQ9sp2mKbwjVLoQgKTxVjovePQOPIfHd5AofQS0VZHRauhNP8iQ420YPw3QEXSWyc4y6CyTnVWRL-t__CoSHH-xPUZvru1QPDv_ACFlhpAy_wqpiuyvYsEMM3puONcCqDIsiBX5tG6GuYgHLDaF6XJuYDVTAgjluK3I2xI6655wwOEtsLmKqI2g2ujqZkua_Mh637JTQFqb9__j2T6QFzhaJfvuk-3FbBkOAFYt3Mc8gx4B6LEktA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvXBBhfIIFGQkhMQh2sSx4_iEWtiqQlAhoKI3y45tWIkm7Wb30D_A72bGcRYWod4264nkZB6eb2YyQ8hL51WlrCxyIbnKOfMWVKqVOauMLYNiTsWM6cfT-uSMvz8X5yngNqSyyskmRkPt-hZj5DPGFAeoAgL55vIqx6lRmF1NIzRuk10wwQ2Ar92j-emnz5MtBm9dyDE5CVBMzUIHbMN6rti3sGZbh1Hs2f8_R_Pfesm_DqDjPXI3eY70cGT1PXLLd_fJ_mEHqPnimr6isZYzBsn3ya8v_mKRmzUsgS_p6EiF_KAfjI2foFPTORrjgfmwthiNod_MEr-eon2gWP6Rv8Pi9tU1Ui1NC4cayCod8SqSzccJOs4PdNFNV7AI-0t9sB-Qs-P517cneZq4kLdcFasc23FJb0LdCmODK2Xhy9oJ44I1ta_AFXRlYKwwvBWOO2UNwCv4XVcyWAe-4kOy0_Wdf0yosN4DWGOVsI6z4GxRG0zjwYHpAnhdGZlNr163qR05TsX4qQGWILN0ZJZGZunIrIy83txxObbiuIH2CLm5ocMm2vGPfvldJ53U3gYhHCA4oyoufaGk4d7Cs4smhKYRGTmYZEEnzR70HznMyIvNMugkJlpM5_v1oMGqSQ7Asqky8mgUnc1OGPjjFaC6jMgtodra6vZKt_gR-36LWgJ4LZ_cvK2n5A6-h_F8PSA7q-XaPwPHaWWfJ-34DfShHT8 priority: 102 providerName: ProQuest |
Title | Semi-automated Anatomical Labeling and Inter-subject Warping of High-Density Intracranial Recording Electrodes in Electrocorticography |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29163118 https://www.proquest.com/docview/2294107730 https://www.proquest.com/docview/1967462583 https://pubmed.ncbi.nlm.nih.gov/PMC5671481 https://doaj.org/article/ebf55d606a9347e097a4eb6c558ff885 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELZQe-GCgPJYKJErISQOS_dhr-MDQi1NWyFaISAiN8te2yVSu2k3iUT-AL-bGe-jDQpcok1mduV4Znbms8czhLy2TubSiCTmgsmYZc6ASZUiznJtUi8zK8OO6dl5cTpmnyZ8cns8up3A-UZoh_2kxvXlu183qw9g8O8RcYK_3fcVkDFLK1QjxBfyNvglgWZ6xvo9BYjcQ93PtCgAfoHiNZuWG5-AJYIhbspT7AVyx1-Fsv6bYtG_Uyrv-Kjjh-RBG1zSg0YbHpF7rnpMdg4qANZXK_qGhnTPsI6-Q35_c1fTWC-BBOGmpQ0Xiox-1iacUqe6sjQsGcbzpcEFG_pD13jAis48xQyR-Ajz3xcr5Kp1CX4P1Jk2kBbZRk2THevmdFp134AI42tLZT8h4-PR94-ncduUIS6ZTBYxVuwSTvui5Np4m4rEpYXl2nqjC5dDtGhTn2WJZiW3zEqjAYHBdZELbyyEk0_JVjWr3HNCuXEO8FyWc2NZ5q1JCo07feBTrYfALCL73dSrsq1Yjo0zLhUgF5SbCnJTKDcV5BaRt_0d1021jv_wHqI0ez6ssx1-mNUXqjVb5Yzn3ALI0zJnwiVSaOYM_Hc-9H445BHZ7XRBdbqrskwyQNXw7ozIXk8Gs8W9GF252XKuQP8EA-w5zCPyrFGdfiSd6kVErCnV2lDXKdX0ZygNzgsB-DZ98c9nviT3cQoa77tLthb10r2CsGphBmT7cHT-5esgLEvA58kkHQQL-gMDfiSw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaq7QEuCCg_gQJGAiQOUbOOHa8PCLV0qy3drhC0ojfXjm1YiWbL_gjtC_A4PCMzTrKwCPXWWxJPJCcznpnPM54h5IXzKldWZqmQXKWceQtLqpQpy43tBsWcihHT41ExOOXvz8TZBvnVnoXBtMpWJ0ZF7SYl7pHvMKY4QBUQyLeX31PsGoXR1baFRi0WR375AyDb7M3hPvD3JWMH_ZN3g7TpKpCWXGXzFEtOSW9CUQpjg-vKzHcLJ4wL1hQ-B3fHdQNjmeGlcNwpawBCwHWRy2CdwkIHoPI3eQ5QpkM29_qjDx9b3Q_oQMg6GArQT-2ECsQE88dincSCrRm_2CPgf47tv_mZfxm8g9vkVuOp0t1atO6QDV_dJVu7FaD0iyV9RWPuaNyU3yI_P_mLcWoWMAS-q6M1FfKfDo2NR96pqRyN-4_pbGFx94d-NlM8rUUngWK6SbqPyfTzJVJNTQlGFNYGrfExkvXrjj3Oz-i4au9gEObX1N2-R06vhRf3SaeaVP4hocJ6D-CQ5cI6zoKzWWEwbAgG2gXw8hKy0_56XTblz7ELxzcNMAiZpSOzNDJLR2Yl5PXqjcu69McVtHvIzRUdFu2ODybTL7rRAdrbIIQDxGhUzqXPlDTcW_h20Quh1xMJ2W5lQTeaZKb_yH1Cnq-GQQdgYMdUfrKYadCikgOQ7eUJeVCLzmomDPz_HFBkQuSaUK1NdX2kGn-NdcZFIQEsdx9dPa1n5Mbg5Hioh4ejo8fkJv6T2rZvk858uvBPwGmb26fNSqHk_LoX52-p-ltE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqVEJcEFAeCwWMBEgcVtl47XV8QKgliVpaogqo6M3Yaxsi0U3JQyh_gB_Fr2PGuxsIQr31lsQTybvz_DzjGUKeOa9yZWWWCslVypm3oFKlTFlubC8o5lTMmL4bFwen_O2ZONsiv9q7MFhW2drEaKjdtMQz8i5jigNUAYHshqYs4mQwen3xPcUJUphpbcdp1CJy5Fc_AL7NXx0OgNfPGRsNP745SJsJA2nJVbZIsf2U9CYUpTA2uJ7MfK9wwrhgTeFzCH1cLzCWGV4Kx52yBuAEfC5yGaxT2PQAzP-2BFSUdcj2_nB88r71A4AUhKwTowADVTdUIDJYSxZ7JhZswxHGeQH_C3L_rdX8y_mNbpIbTdRK92oxu0W2fHWb7OxVgNjPV_QFjXWk8YB-h_z84M8nqVnCEsSxjtZUKAv02Nh4_Z2aytF4FpnOlxZPgugnM8ObW3QaKJaepAMsrF-skGpmSnCooCe0xspINqyn9zg_p5Oq_QaLsL-mB_cdcnolvLhLOtW08vcJFdZ7AIosF9ZxFpzNCoMpRHDWLkDEl5Bu--p12bRCx4kc3zRAImSWjszSyCwdmZWQl-t_XNRtQC6h3UdurumwgXf8YTr7oht7oL0NQjhAj0blXPpMScO9hWcX_RD6fZGQ3VYWdGNV5vqPDiTk6XoZ7AEmeUzlp8u5BosqOYDafp6Qe7XorHfCAAvkgCgTIjeEamOrmyvV5GvsOS4KCcC59-DybT0h10Ap9fHh-OghuY6vpHbzu6SzmC39I4jfFvZxoyiUfL5q3fwNetxfeQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-automated+Anatomical+Labeling+and+Inter-subject+Warping+of+High-Density+Intracranial+Recording+Electrodes+in+Electrocorticography&rft.jtitle=Frontiers+in+neuroinformatics&rft.au=Hamilton%2C+Liberty+S&rft.au=Chang%2C+David+L&rft.au=Lee%2C+Morgan+B&rft.au=Chang%2C+Edward+F&rft.date=2017-10-31&rft.issn=1662-5196&rft.eissn=1662-5196&rft.volume=11&rft.spage=62&rft_id=info:doi/10.3389%2Ffninf.2017.00062&rft_id=info%3Apmid%2F29163118&rft.externalDocID=29163118 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5196&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5196&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5196&client=summon |