Semi-automated Anatomical Labeling and Inter-subject Warping of High-Density Intracranial Recording Electrodes in Electrocorticography

In this article, we introduce img_pipe, our open source python package for preprocessing of imaging data for use in intracranial electrocorticography (ECoG) and intracranial stereo-EEG analyses. The process of electrode localization, labeling, and warping for use in ECoG currently varies widely acro...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroinformatics Vol. 11; p. 62
Main Authors Hamilton, Liberty S., Chang, David L., Lee, Morgan B., Chang, Edward F.
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 31.10.2017
Frontiers Media S.A
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this article, we introduce img_pipe, our open source python package for preprocessing of imaging data for use in intracranial electrocorticography (ECoG) and intracranial stereo-EEG analyses. The process of electrode localization, labeling, and warping for use in ECoG currently varies widely across laboratories, and it is usually performed with custom, lab-specific code. This python package aims to provide a standardized interface for these procedures, as well as code to plot and display results on 3D cortical surface meshes. It gives the user an easy interface to create anatomically labeled electrodes that can also be warped to an atlas brain, starting with only a preoperative T1 MRI scan and a postoperative CT scan. We describe the full capabilities of our imaging pipeline and present a step-by-step protocol for users.
AbstractList In this article we introduce img_pipe, our open source python package for preprocessing of imaging data for use in intracranial electrocorticography (ECoG) and intracranial stereo-EEG analyses. The process of electrode localization, labeling, and warping for use in ECoG currently varies widely across laboratories, and it is usually performed with custom, lab-specific code. This python package aims to provide a standardized interface for these procedures, as well as code to plot and display results on 3D cortical surface meshes. It gives the user an easy interface to create anatomically labeled electrodes that can also be warped to an atlas brain, starting with only a preoperative T1 MRI scan and a postoperative CT scan. We describe the full capabilities of our imaging pipeline and present a step-by-step protocol for users.
In this article, we introduce img_pipe , our open source python package for preprocessing of imaging data for use in intracranial electrocorticography (ECoG) and intracranial stereo-EEG analyses. The process of electrode localization, labeling, and warping for use in ECoG currently varies widely across laboratories, and it is usually performed with custom, lab-specific code. This python package aims to provide a standardized interface for these procedures, as well as code to plot and display results on 3D cortical surface meshes. It gives the user an easy interface to create anatomically labeled electrodes that can also be warped to an atlas brain, starting with only a preoperative T1 MRI scan and a postoperative CT scan. We describe the full capabilities of our imaging pipeline and present a step-by-step protocol for users.
In this article, we introduce img_pipe, our open source python package for preprocessing of imaging data for use in intracranial electrocorticography (ECoG) and intracranial stereo-EEG analyses. The process of electrode localization, labeling, and warping for use in ECoG currently varies widely across laboratories, and it is usually performed with custom, lab-specific code. This python package aims to provide a standardized interface for these procedures, as well as code to plot and display results on 3D cortical surface meshes. It gives the user an easy interface to create anatomically labeled electrodes that can also be warped to an atlas brain, starting with only a preoperative T1 MRI scan and a postoperative CT scan. We describe the full capabilities of our imaging pipeline and present a step-by-step protocol for users.In this article, we introduce img_pipe, our open source python package for preprocessing of imaging data for use in intracranial electrocorticography (ECoG) and intracranial stereo-EEG analyses. The process of electrode localization, labeling, and warping for use in ECoG currently varies widely across laboratories, and it is usually performed with custom, lab-specific code. This python package aims to provide a standardized interface for these procedures, as well as code to plot and display results on 3D cortical surface meshes. It gives the user an easy interface to create anatomically labeled electrodes that can also be warped to an atlas brain, starting with only a preoperative T1 MRI scan and a postoperative CT scan. We describe the full capabilities of our imaging pipeline and present a step-by-step protocol for users.
Author Chang, Edward F.
Hamilton, Liberty S.
Chang, David L.
Lee, Morgan B.
AuthorAffiliation 2 Center for Integrative Neuroscience, University of California, San Francisco , San Francisco, CA , United States
1 Department of Neurosurgery, University of California, San Francisco , San Francisco, CA , United States
AuthorAffiliation_xml – name: 2 Center for Integrative Neuroscience, University of California, San Francisco , San Francisco, CA , United States
– name: 1 Department of Neurosurgery, University of California, San Francisco , San Francisco, CA , United States
Author_xml – sequence: 1
  givenname: Liberty S.
  surname: Hamilton
  fullname: Hamilton, Liberty S.
– sequence: 2
  givenname: David L.
  surname: Chang
  fullname: Chang, David L.
– sequence: 3
  givenname: Morgan B.
  surname: Lee
  fullname: Lee, Morgan B.
– sequence: 4
  givenname: Edward F.
  surname: Chang
  fullname: Chang, Edward F.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29163118$$D View this record in MEDLINE/PubMed
BookMark eNp1Uk2L2zAUNGVL96O991QMvfTiVLItyb4Ulu22GwgU-kGP4ll6chQcKZXsQv5Af3flZFN2F3rSk97MaKQ3l9mZ8w6z7DUli6pq2vfGWWcWJaFiQQjh5bPsgnJeFoy2_OxBfZ5dxriZEZyJF9l52VJeUdpcZH--4dYWMI1-CyPq_NpBKq2CIV9Bh4N1fQ5O50s3Yiji1G1QjflPCLu5401-Z_t18RFdtON-RgVQAZxN_K-ofNAz7HZIpOA1xty60y41R6t8H2C33r_MnhsYIr66X6-yH59uv9_cFasvn5c316tC1S0ZCyZIJRAMVww6o6kgSLlmoE0HHKuKEk1NWRKoFdO1bjtoGU81r4TpdFtWV9nyqKs9bOQu2C2EvfRg5eHAh17CbGtAiZ1hTHPCoa1qgaQVUGOXbmaNMU3DktaHo9Zu6raoFc6PHx6JPu44u5a9_y0ZF7RuaBJ4dy8Q_K8J4yi3NiocBnDopyjT4ETNS9ZUCfr2CXTjp-DSV8mybGtKhKhIQr156OifldO4E4AfASr4GAMaqewIo_WzQTtISuScK3nIlZxzJQ-5SkTyhHjS_i_lL0yE1FA
CitedBy_id crossref_primary_10_1016_j_celrep_2024_114924
crossref_primary_10_7554_eLife_53051
crossref_primary_10_1038_s41598_023_40282_7
crossref_primary_10_1016_j_neuroimage_2019_03_061
crossref_primary_10_1038_s41598_021_02307_x
crossref_primary_10_1073_pnas_2322869121
crossref_primary_10_1016_j_cell_2021_07_019
crossref_primary_10_1073_pnas_2101777118
crossref_primary_10_1038_s41746_024_01115_7
crossref_primary_10_1016_j_neuroimage_2020_117341
crossref_primary_10_1016_j_cell_2018_05_016
crossref_primary_10_1038_s41562_022_01334_6
crossref_primary_10_1093_brain_awab380
crossref_primary_10_1038_s41597_022_01542_9
crossref_primary_10_1016_j_neuron_2023_04_004
crossref_primary_10_1038_s41586_019_1119_1
crossref_primary_10_1162_jocn_a_01450
crossref_primary_10_1038_s41593_023_01338_z
crossref_primary_10_1016_j_procs_2023_01_082
crossref_primary_10_1016_j_neuroimage_2022_119438
crossref_primary_10_1523_ENEURO_0328_23_2023
crossref_primary_10_1016_j_jocn_2019_03_061
crossref_primary_10_3389_fnins_2019_00832
crossref_primary_10_1038_s42003_021_02578_0
crossref_primary_10_1073_pnas_2207831120
crossref_primary_10_3389_fnins_2021_748165
crossref_primary_10_1088_1741_2552_ad851c
crossref_primary_10_1016_j_neuron_2021_10_002
crossref_primary_10_1038_s41586_023_06443_4
crossref_primary_10_1016_j_ebiom_2025_105606
crossref_primary_10_1126_sciadv_adk0010
crossref_primary_10_1016_j_neuroimage_2022_119389
crossref_primary_10_1016_j_xpro_2025_103650
crossref_primary_10_1093_neuros_nyy592
crossref_primary_10_1523_JNEUROSCI_1109_24_2024
crossref_primary_10_1038_s41467_023_43257_4
crossref_primary_10_3389_fnins_2023_1283491
crossref_primary_10_1111_epi_17781
crossref_primary_10_1080_02643294_2018_1472559
crossref_primary_10_3389_fnhum_2021_746499
crossref_primary_10_1038_s42003_025_07862_x
crossref_primary_10_1111_epi_17863
crossref_primary_10_1016_j_jneumeth_2019_108396
crossref_primary_10_1088_1741_2552_ab7c8e
crossref_primary_10_3389_fnins_2022_795417
crossref_primary_10_1126_sciadv_adh0478
crossref_primary_10_1038_s41593_023_01468_4
crossref_primary_10_1016_j_neuroimage_2018_06_050
crossref_primary_10_1088_1741_2552_aaab6f
crossref_primary_10_3171_2019_11_FOCUS19696
crossref_primary_10_1093_brain_awab125
crossref_primary_10_1111_epi_16580
crossref_primary_10_1016_j_heares_2023_108838
crossref_primary_10_1126_sciadv_aay6279
crossref_primary_10_1016_j_neuron_2020_02_012
crossref_primary_10_1093_braincomms_fcaf020
crossref_primary_10_1111_epi_16841
crossref_primary_10_1088_1741_2552_ad593a
crossref_primary_10_3389_fninf_2022_788685
crossref_primary_10_1088_1741_2552_abad7a
crossref_primary_10_1016_j_cell_2025_02_001
crossref_primary_10_1038_s41467_023_42175_9
crossref_primary_10_1038_s41467_021_21430_x
crossref_primary_10_21105_joss_03897
crossref_primary_10_3389_fninf_2021_773890
crossref_primary_10_1016_j_cub_2018_04_033
crossref_primary_10_1111_cns_14155
crossref_primary_10_3389_fnhum_2018_00360
crossref_primary_10_1093_brain_awac121
crossref_primary_10_1038_s41467_019_10994_4
Cites_doi 10.1155/2011/156869
10.1016/j.neuron.2015.03.037
10.1109/TMI.2008.2004426
10.1101/069179
10.1088/1741-2560/13/5/056004
10.1093/cercor/bhg087
10.1101/097485
10.1016/j.jneumeth.2008.06.028
10.1016/j.neuroimage.2011.11.046
10.1523/JNEUROSCI.0156-16.2016
10.1016/j.jneumeth.2009.10.005
10.1016/j.neuroimage.2006.01.021
10.1016/j.jneumeth.2007.01.019
10.1038/ncomms13619
10.1016/j.neuroimage.2012.06.039
10.1126/science.aam8577
10.1088/1741-2560/13/5/056013
10.1007/s11548-016-1504-2
ContentType Journal Article
Copyright 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2017 Hamilton, Chang, Lee and Chang. 2017 Hamilton, Chang, Lee and Chang
Copyright_xml – notice: 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2017 Hamilton, Chang, Lee and Chang. 2017 Hamilton, Chang, Lee and Chang
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fninf.2017.00062
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest
Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
PubMed

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5196
ExternalDocumentID oai_doaj_org_article_ebf55d606a9347e097a4eb6c558ff885
PMC5671481
29163118
10_3389_fninf_2017_00062
Genre Journal Article
GeographicLocations United States--US
San Francisco California
California
GeographicLocations_xml – name: San Francisco California
– name: United States--US
– name: California
GrantInformation_xml – fundername: National Institutes of Health
  grantid: F32 DC014192-01; DP2-OD00862; R01-DC012379
– fundername: Defense Advanced Research Projects Agency
  grantid: W911NF-14-2-0043
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAKPC
AAYXX
ABUWG
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
TR2
C1A
IAO
IEA
IHR
IPNFZ
ISR
NPM
RIG
3V.
7XB
8FK
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c490t-57037eaf6c5abfd170e16d5adfba6e3310d1f220a4c5d4d9ba9564c5637fbd923
IEDL.DBID M48
ISSN 1662-5196
IngestDate Wed Aug 27 01:23:52 EDT 2025
Thu Aug 21 14:01:05 EDT 2025
Fri Jul 11 02:06:20 EDT 2025
Fri Jul 25 11:52:08 EDT 2025
Wed Feb 19 02:43:02 EST 2025
Tue Jul 01 01:13:20 EDT 2025
Thu Apr 24 23:09:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords epilepsy
open science
electrocorticography
image coregistration
electrode localization
intracranial recordings
subdural electrodes
surgery
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-57037eaf6c5abfd170e16d5adfba6e3310d1f220a4c5d4d9ba9564c5637fbd923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by: Satrajit S. Ghosh, Massachusetts Institute of Technology, United States
Reviewed by: Andrei Irimia, University of Southern California, United States; Michael S. Beauchamp, Baylor College of Medicine, United States
OpenAccessLink https://www.proquest.com/docview/2294107730?pq-origsite=%requestingapplication%
PMID 29163118
PQID 2294107730
PQPubID 4424404
ParticipantIDs doaj_primary_oai_doaj_org_article_ebf55d606a9347e097a4eb6c558ff885
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5671481
proquest_miscellaneous_1967462583
proquest_journals_2294107730
pubmed_primary_29163118
crossref_citationtrail_10_3389_fninf_2017_00062
crossref_primary_10_3389_fninf_2017_00062
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-31
PublicationDateYYYYMMDD 2017-10-31
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-31
  day: 31
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neuroinformatics
PublicationTitleAlternate Front Neuroinform
PublicationYear 2017
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References LaPlante (B12) 2016; 12
Moses (B15) 2016; 13
B11
Postelnicu (B19) 2009; 28
Muller (B16)
Muller (B17); 13
Yang (B22) 2012; 63
Groppe (B8) 2016
Oostenveld (B18) 2011; 2011
Ramachandran (B20) 2001
Hamilton (B9) 2016
Dichter (B5) 2016; 36
Hermes (B10) 2010; 185
Leonard (B13) 2016; 7
Fischl (B7) 2004; 14
Desikan (B4) 2006; 31
Dalal (B3) 2008; 174
Chang (B2) 2015; 86
Tang (B21) 2017; 357
Dykstra (B6) 2012; 59
Miller (B14) 2007; 162
Ashburner (B1) 1997
15891163 - AJNR Am J Neuroradiol. 2005 May;26(5):1078-83
27484713 - J Neural Eng. 2016 Oct;13(5):056004
22155045 - Neuroimage. 2012 Feb 15;59(4):3563-70
21253357 - Comput Intell Neurosci. 2011;2011:156869
27413155 - J Neurosci. 2016 Jul 13;36(28):7453-63
16530430 - Neuroimage. 2006 Jul 1;31(3):968-80
17343918 - J Neurosci Methods. 2007 May 15;162(1-2):303-8
27996973 - Nat Commun. 2016 Dec 20;7:13619
22759995 - Neuroimage. 2012 Oct 15;63(1):157-165
27578414 - J Neural Eng. 2016 Oct;13(5):056013
28839071 - Science. 2017 Aug 25;357(6353):797-801
28192130 - J Neurosci Methods. 2017 Apr 1;281:40-48
28268617 - Conf Proc IEEE Eng Med Biol Soc. 2016 Aug;2016:1528-1531
25856487 - Neuron. 2015 Apr 8;86(1):68-78
19836416 - J Neurosci Methods. 2010 Jan 15;185(2):293-8
19273000 - IEEE Trans Med Imaging. 2009 Apr;28(4):508-22
18657573 - J Neurosci Methods. 2008 Sep 15;174(1):106-15
27915398 - Int J Comput Assist Radiol Surg. 2017 Oct;12 (10 ):1829-1837
14654453 - Cereb Cortex. 2004 Jan;14(1):11-22
References_xml – volume: 2011
  start-page: 156869
  year: 2011
  ident: B18
  article-title: FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data
  publication-title: Comput. Intell. Neurosci
  doi: 10.1155/2011/156869
– ident: B11
– volume: 86
  start-page: 68
  year: 2015
  ident: B2
  article-title: Towards large-scale, human-based, mesoscopic neurotechnologies
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.03.037
– volume: 28
  start-page: 508
  year: 2009
  ident: B19
  article-title: Combined volumetric and surface registration
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2008.2004426
– start-page: 1
  year: 2016
  ident: B8
  article-title: iELVis: an open source MATLAB toolbox for localizing and visualizing human intracranial electrode data
  publication-title: bioRxiv
  doi: 10.1101/069179
– volume: 13
  start-page: 1
  year: 2016
  ident: B15
  article-title: Neural speech recognition: continuous phoneme decoding using spatiotemporal representations of human cortical activity
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2560/13/5/056004
– volume: 14
  start-page: 11
  year: 2004
  ident: B7
  article-title: Automatically parcellating the human cerebral cortex
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhg087
– year: 2016
  ident: B9
  article-title: Parallel streams define the temporal dynamics of speech processing across human auditory cortex
  publication-title: bioRxiv
  doi: 10.1101/097485
– start-page: 1528
  volume-title: IEEE 38th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC)
  ident: B16
  article-title: Thin-film, high-density micro-electrocorticographic decoding of a human cortical gyrus
– volume: 174
  start-page: 106
  year: 2008
  ident: B3
  article-title: Localization of neurosurgically implanted electrodes via photograph-MRI-radiograph coregistration
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2008.06.028
– volume: 59
  start-page: 3563
  year: 2012
  ident: B6
  article-title: Individualized localization and cortical surface-based registration of intracranial electrodes
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.11.046
– volume: 36
  start-page: 7453
  year: 2016
  ident: B5
  article-title: Dynamic structure of neural variability in the cortical representation of speech sounds
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0156-16.2016
– volume: 185
  start-page: 293
  year: 2010
  ident: B10
  article-title: Automated electrocorticographic electrode localization on individually rendered brain surfaces
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2009.10.005
– volume: 31
  start-page: 968
  year: 2006
  ident: B4
  article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.01.021
– volume: 162
  start-page: 303
  year: 2007
  ident: B14
  article-title: Cortical electrode localization from X-rays and simple mapping for electrocorticographic research: The “Location on Cortex” (LOC) package for MATLAB
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2007.01.019
– volume-title: Annual. CFD Symposium
  year: 2001
  ident: B20
  article-title: MayaVi: a free tool for CFD data visualization
– volume: 7
  start-page: 13619
  year: 2016
  ident: B13
  article-title: Perceptual restoration of masked speech in human cortex
  publication-title: Nat. Commun
  doi: 10.1038/ncomms13619
– volume: 63
  start-page: 157
  year: 2012
  ident: B22
  article-title: Localization of dense intracranial electrode arrays using magnetic resonance imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.06.039
– volume: 357
  start-page: 797
  year: 2017
  ident: B21
  article-title: Intonational speech prosody encoding in human auditory cortex
  publication-title: Science
  doi: 10.1126/science.aam8577
– start-page: 43
  year: 1997
  ident: B1
  article-title: Spatial transformation of images
  publication-title: Hum. Brain Funct
– volume: 13
  start-page: 56013
  ident: B17
  article-title: Spatial resolution dependence on spectral frequency in human speech cortex electrocorticography
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2560/13/5/056013
– volume: 12
  start-page: 1829
  year: 2016
  ident: B12
  article-title: The interactive electrode localization utility: software for automatic sorting and labeling of intracranial subdural electrodes
  publication-title: Int. J. Comput. Assist. Radiol. Surg
  doi: 10.1007/s11548-016-1504-2
– reference: 27578414 - J Neural Eng. 2016 Oct;13(5):056013
– reference: 19836416 - J Neurosci Methods. 2010 Jan 15;185(2):293-8
– reference: 21253357 - Comput Intell Neurosci. 2011;2011:156869
– reference: 19273000 - IEEE Trans Med Imaging. 2009 Apr;28(4):508-22
– reference: 25856487 - Neuron. 2015 Apr 8;86(1):68-78
– reference: 27413155 - J Neurosci. 2016 Jul 13;36(28):7453-63
– reference: 15891163 - AJNR Am J Neuroradiol. 2005 May;26(5):1078-83
– reference: 28192130 - J Neurosci Methods. 2017 Apr 1;281:40-48
– reference: 28839071 - Science. 2017 Aug 25;357(6353):797-801
– reference: 27484713 - J Neural Eng. 2016 Oct;13(5):056004
– reference: 22759995 - Neuroimage. 2012 Oct 15;63(1):157-165
– reference: 14654453 - Cereb Cortex. 2004 Jan;14(1):11-22
– reference: 18657573 - J Neurosci Methods. 2008 Sep 15;174(1):106-15
– reference: 27996973 - Nat Commun. 2016 Dec 20;7:13619
– reference: 17343918 - J Neurosci Methods. 2007 May 15;162(1-2):303-8
– reference: 28268617 - Conf Proc IEEE Eng Med Biol Soc. 2016 Aug;2016:1528-1531
– reference: 16530430 - Neuroimage. 2006 Jul 1;31(3):968-80
– reference: 22155045 - Neuroimage. 2012 Feb 15;59(4):3563-70
– reference: 27915398 - Int J Comput Assist Radiol Surg. 2017 Oct;12 (10 ):1829-1837
SSID ssj0062657
Score 2.4081502
Snippet In this article, we introduce img_pipe, our open source python package for preprocessing of imaging data for use in intracranial electrocorticography (ECoG)...
In this article we introduce img_pipe, our open source python package for preprocessing of imaging data for use in intracranial electrocorticography (ECoG) and...
In this article, we introduce img_pipe , our open source python package for preprocessing of imaging data for use in intracranial electrocorticography (ECoG)...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 62
SubjectTerms Automation
Cloning
Computed tomography
Cortex
EEG
electrocorticography
electrode localization
Electrodes
Epilepsy
image coregistration
Intracranial recording
intracranial recordings
Labeling
Localization
Magnetic resonance imaging
Medical imaging
Neuroimaging
Neuroscience
NMR
Nuclear magnetic resonance
Operating systems
Review boards
Software packages
surgery
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NbxshEEVRTr1EbdO02yYVlapIPSDvsrCYYz4VRWkuadTcECygWmpw5Y9D_kB_d2ZgbcVR1V56s81YYpmBeQ9mH4R89kG32qmaSSU0Ezw4mFK9Yry1romae51PTL9edxe34vJO3j256gtrwoo8cBm4UXBRSg8w2-pWqFBrZUVwXS_lOMbxOKuXQs5bkamyBgNKl6ocSgIF06OYwF1Yx5X1Cju-kYSyVv-fAObzOsknief8JdkZECM9Kj19RbZCek12jxKw5fsHekhzDWfeHN8lv2_C_YTZJTQBhvS0WKEf6JV1-dVzapOneR-QzZcOd2HodzvDt6boNFIs-2CnWNS-eECrme0hmUGM0sJT0eys3Jzjw5xO0uobNEL_Bv3rN-T2_OzbyQUbblpgvdD1gqEMlwo2wrBaF32j6tB0Xlofne1CCxDQN5Hz2opeeuG1s0Cr4HPXqug8YMQ9sp2mKbwjVLoQgKTxVjovePQOPIfHd5AofQS0VZHRauhNP8iQ420YPw3QEXSWyc4y6CyTnVWRL-t__CoSHH-xPUZvru1QPDv_ACFlhpAy_wqpiuyvYsEMM3puONcCqDIsiBX5tG6GuYgHLDaF6XJuYDVTAgjluK3I2xI6655wwOEtsLmKqI2g2ujqZkua_Mh637JTQFqb9__j2T6QFzhaJfvuk-3FbBkOAFYt3Mc8gx4B6LEktA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvXBBhfIIFGQkhMQh2sSx4_iEWtiqQlAhoKI3y45tWIkm7Wb30D_A72bGcRYWod4264nkZB6eb2YyQ8hL51WlrCxyIbnKOfMWVKqVOauMLYNiTsWM6cfT-uSMvz8X5yngNqSyyskmRkPt-hZj5DPGFAeoAgL55vIqx6lRmF1NIzRuk10wwQ2Ar92j-emnz5MtBm9dyDE5CVBMzUIHbMN6rti3sGZbh1Hs2f8_R_Pfesm_DqDjPXI3eY70cGT1PXLLd_fJ_mEHqPnimr6isZYzBsn3ya8v_mKRmzUsgS_p6EiF_KAfjI2foFPTORrjgfmwthiNod_MEr-eon2gWP6Rv8Pi9tU1Ui1NC4cayCod8SqSzccJOs4PdNFNV7AI-0t9sB-Qs-P517cneZq4kLdcFasc23FJb0LdCmODK2Xhy9oJ44I1ta_AFXRlYKwwvBWOO2UNwCv4XVcyWAe-4kOy0_Wdf0yosN4DWGOVsI6z4GxRG0zjwYHpAnhdGZlNr163qR05TsX4qQGWILN0ZJZGZunIrIy83txxObbiuIH2CLm5ocMm2vGPfvldJ53U3gYhHCA4oyoufaGk4d7Cs4smhKYRGTmYZEEnzR70HznMyIvNMugkJlpM5_v1oMGqSQ7Asqky8mgUnc1OGPjjFaC6jMgtodra6vZKt_gR-36LWgJ4LZ_cvK2n5A6-h_F8PSA7q-XaPwPHaWWfJ-34DfShHT8
  priority: 102
  providerName: ProQuest
Title Semi-automated Anatomical Labeling and Inter-subject Warping of High-Density Intracranial Recording Electrodes in Electrocorticography
URI https://www.ncbi.nlm.nih.gov/pubmed/29163118
https://www.proquest.com/docview/2294107730
https://www.proquest.com/docview/1967462583
https://pubmed.ncbi.nlm.nih.gov/PMC5671481
https://doaj.org/article/ebf55d606a9347e097a4eb6c558ff885
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELZQe-GCgPJYKJErISQOS_dhr-MDQi1NWyFaISAiN8te2yVSu2k3iUT-AL-bGe-jDQpcok1mduV4Znbms8czhLy2TubSiCTmgsmYZc6ASZUiznJtUi8zK8OO6dl5cTpmnyZ8cns8up3A-UZoh_2kxvXlu183qw9g8O8RcYK_3fcVkDFLK1QjxBfyNvglgWZ6xvo9BYjcQ93PtCgAfoHiNZuWG5-AJYIhbspT7AVyx1-Fsv6bYtG_Uyrv-Kjjh-RBG1zSg0YbHpF7rnpMdg4qANZXK_qGhnTPsI6-Q35_c1fTWC-BBOGmpQ0Xiox-1iacUqe6sjQsGcbzpcEFG_pD13jAis48xQyR-Ajz3xcr5Kp1CX4P1Jk2kBbZRk2THevmdFp134AI42tLZT8h4-PR94-ncduUIS6ZTBYxVuwSTvui5Np4m4rEpYXl2nqjC5dDtGhTn2WJZiW3zEqjAYHBdZELbyyEk0_JVjWr3HNCuXEO8FyWc2NZ5q1JCo07feBTrYfALCL73dSrsq1Yjo0zLhUgF5SbCnJTKDcV5BaRt_0d1021jv_wHqI0ez6ssx1-mNUXqjVb5Yzn3ALI0zJnwiVSaOYM_Hc-9H445BHZ7XRBdbqrskwyQNXw7ozIXk8Gs8W9GF252XKuQP8EA-w5zCPyrFGdfiSd6kVErCnV2lDXKdX0ZygNzgsB-DZ98c9nviT3cQoa77tLthb10r2CsGphBmT7cHT-5esgLEvA58kkHQQL-gMDfiSw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaq7QEuCCg_gQJGAiQOUbOOHa8PCLV0qy3drhC0ojfXjm1YiWbL_gjtC_A4PCMzTrKwCPXWWxJPJCcznpnPM54h5IXzKldWZqmQXKWceQtLqpQpy43tBsWcihHT41ExOOXvz8TZBvnVnoXBtMpWJ0ZF7SYl7pHvMKY4QBUQyLeX31PsGoXR1baFRi0WR375AyDb7M3hPvD3JWMH_ZN3g7TpKpCWXGXzFEtOSW9CUQpjg-vKzHcLJ4wL1hQ-B3fHdQNjmeGlcNwpawBCwHWRy2CdwkIHoPI3eQ5QpkM29_qjDx9b3Q_oQMg6GArQT-2ECsQE88dincSCrRm_2CPgf47tv_mZfxm8g9vkVuOp0t1atO6QDV_dJVu7FaD0iyV9RWPuaNyU3yI_P_mLcWoWMAS-q6M1FfKfDo2NR96pqRyN-4_pbGFx94d-NlM8rUUngWK6SbqPyfTzJVJNTQlGFNYGrfExkvXrjj3Oz-i4au9gEObX1N2-R06vhRf3SaeaVP4hocJ6D-CQ5cI6zoKzWWEwbAgG2gXw8hKy0_56XTblz7ELxzcNMAiZpSOzNDJLR2Yl5PXqjcu69McVtHvIzRUdFu2ODybTL7rRAdrbIIQDxGhUzqXPlDTcW_h20Quh1xMJ2W5lQTeaZKb_yH1Cnq-GQQdgYMdUfrKYadCikgOQ7eUJeVCLzmomDPz_HFBkQuSaUK1NdX2kGn-NdcZFIQEsdx9dPa1n5Mbg5Hioh4ejo8fkJv6T2rZvk858uvBPwGmb26fNSqHk_LoX52-p-ltE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqVEJcEFAeCwWMBEgcVtl47XV8QKgliVpaogqo6M3Yaxsi0U3JQyh_gB_Fr2PGuxsIQr31lsQTybvz_DzjGUKeOa9yZWWWCslVypm3oFKlTFlubC8o5lTMmL4bFwen_O2ZONsiv9q7MFhW2drEaKjdtMQz8i5jigNUAYHshqYs4mQwen3xPcUJUphpbcdp1CJy5Fc_AL7NXx0OgNfPGRsNP745SJsJA2nJVbZIsf2U9CYUpTA2uJ7MfK9wwrhgTeFzCH1cLzCWGV4Kx52yBuAEfC5yGaxT2PQAzP-2BFSUdcj2_nB88r71A4AUhKwTowADVTdUIDJYSxZ7JhZswxHGeQH_C3L_rdX8y_mNbpIbTdRK92oxu0W2fHWb7OxVgNjPV_QFjXWk8YB-h_z84M8nqVnCEsSxjtZUKAv02Nh4_Z2aytF4FpnOlxZPgugnM8ObW3QaKJaepAMsrF-skGpmSnCooCe0xspINqyn9zg_p5Oq_QaLsL-mB_cdcnolvLhLOtW08vcJFdZ7AIosF9ZxFpzNCoMpRHDWLkDEl5Bu--p12bRCx4kc3zRAImSWjszSyCwdmZWQl-t_XNRtQC6h3UdurumwgXf8YTr7oht7oL0NQjhAj0blXPpMScO9hWcX_RD6fZGQ3VYWdGNV5vqPDiTk6XoZ7AEmeUzlp8u5BosqOYDafp6Qe7XorHfCAAvkgCgTIjeEamOrmyvV5GvsOS4KCcC59-DybT0h10Ap9fHh-OghuY6vpHbzu6SzmC39I4jfFvZxoyiUfL5q3fwNetxfeQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-automated+Anatomical+Labeling+and+Inter-subject+Warping+of+High-Density+Intracranial+Recording+Electrodes+in+Electrocorticography&rft.jtitle=Frontiers+in+neuroinformatics&rft.au=Hamilton%2C+Liberty+S&rft.au=Chang%2C+David+L&rft.au=Lee%2C+Morgan+B&rft.au=Chang%2C+Edward+F&rft.date=2017-10-31&rft.issn=1662-5196&rft.eissn=1662-5196&rft.volume=11&rft.spage=62&rft_id=info:doi/10.3389%2Ffninf.2017.00062&rft_id=info%3Apmid%2F29163118&rft.externalDocID=29163118
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5196&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5196&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5196&client=summon