Semi-automated Anatomical Labeling and Inter-subject Warping of High-Density Intracranial Recording Electrodes in Electrocorticography
In this article, we introduce img_pipe, our open source python package for preprocessing of imaging data for use in intracranial electrocorticography (ECoG) and intracranial stereo-EEG analyses. The process of electrode localization, labeling, and warping for use in ECoG currently varies widely acro...
Saved in:
Published in | Frontiers in neuroinformatics Vol. 11; p. 62 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
31.10.2017
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this article, we introduce img_pipe, our open source python package for preprocessing of imaging data for use in intracranial electrocorticography (ECoG) and intracranial stereo-EEG analyses. The process of electrode localization, labeling, and warping for use in ECoG currently varies widely across laboratories, and it is usually performed with custom, lab-specific code. This python package aims to provide a standardized interface for these procedures, as well as code to plot and display results on 3D cortical surface meshes. It gives the user an easy interface to create anatomically labeled electrodes that can also be warped to an atlas brain, starting with only a preoperative T1 MRI scan and a postoperative CT scan. We describe the full capabilities of our imaging pipeline and present a step-by-step protocol for users. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Edited by: Satrajit S. Ghosh, Massachusetts Institute of Technology, United States Reviewed by: Andrei Irimia, University of Southern California, United States; Michael S. Beauchamp, Baylor College of Medicine, United States |
ISSN: | 1662-5196 1662-5196 |
DOI: | 10.3389/fninf.2017.00062 |