Multi-transmit beam forming for fast cardiac imaging-a simulation study

Imaging at high temporal resolution is critical for a better understanding of transient cardiac phases with potential diagnostic value. Typically, parallel receive beam forming is used to achieve this. As an alternative, transmitting multiple lines simultaneously [i.e., multi-line transmit (MLT)] ha...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on ultrasonics, ferroelectrics, and frequency control Vol. 60; no. 8; pp. 1719 - 1731
Main Authors Tong, Ling, Gao, Hang, D'hooge, Jan
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2013
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Imaging at high temporal resolution is critical for a better understanding of transient cardiac phases with potential diagnostic value. Typically, parallel receive beam forming is used to achieve this. As an alternative, transmitting multiple lines simultaneously [i.e., multi-line transmit (MLT)] has been proposed. However, this approach has received less attention, most likely because of potential cross-talk artifacts between beams. In this study, based on different transducer configurations, the cross-talk level of different MLT systems was investigated and their point spread functions (PSFs) were compared with that of conventional beam forming (single-line transmit, SLT) by computer simulation. To reduce cross-talk artifacts, 7 different windowing functions were tested on transmit and receive: rectangular, Tukey (α = 0.5), Hann, cosine, Hamming, Gaussian (α = 0.4), and Nuttall. The simulation results showed the cross-talk varied inversely with the MLT beam opening angle and apodization could significantly reduce these artifacts at distinct opening angles, which were dependent on the transducer configuration. The optimal settings for an MLT system were highly dependent on the exact transducer configuration and must be deduced based on a given transducer. In particular, for a typical cardiac transducer configuration, a 4MLT imaging system with an opening angle of 22.73° and a Tukey (α = 0.5)-Tukey (α = 0.5) windowing scheme provided very similar image quality to SLT but with a 4 times higher frame rate. In addition, the MLT approach can be combined with (multiple) parallel receive beamforming to increase frame rate further. With these methods, a frame rate of approximately 300 Hz can be achieved to generate a 90° sector image without significant loss in image quality.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0885-3010
1525-8955
DOI:10.1109/TUFFC.2013.2753