The Influence of Gamma Radiation on Different Gelatin Nanofibers and Gelatins

Gelatin nanofibers are known as wound-healing biomaterials due to their high biocompatible, biodegradable, and non-antigenic properties compared to synthetic-polymer-fabricated nanofibers. The influence of gamma radiation doses on the structure of gelatin nanofiber dressings compared to gelatin of t...

Full description

Saved in:
Bibliographic Details
Published inGels Vol. 10; no. 4; p. 226
Main Authors Gaidau, Carmen, Râpă, Maria, Ionita, Gabriela, Stanculescu, Ioana Rodica, Zaharescu, Traian, Constantinescu, Rodica-Roxana, Lazea-Stoyanova, Andrada, Stanca, Maria
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Gelatin nanofibers are known as wound-healing biomaterials due to their high biocompatible, biodegradable, and non-antigenic properties compared to synthetic-polymer-fabricated nanofibers. The influence of gamma radiation doses on the structure of gelatin nanofiber dressings compared to gelatin of their origin is little known, although it is very important for the production of stable bioactive products. Different-origin gelatins were extracted from bovine and donkey hides, rabbit skins, and fish scales and used for fabrication of nanofibers through electrospinning of gelatin solutions in acetic acid. Nanofibers with sizes ranging from 73.50 nm to 230.46 nm were successfully prepared, thus showing the potential of different-origin gelatin by-products valorization as a lower-cost alternative to native collagen. The gelatin nanofibers together with their origin gelatins were treated with 10, 20, and 25 kGy gamma radiation doses and investigated for their structural stability through chemiluminescence and FTIR spectroscopy. Chemiluminescence analysis showed a stable behavior of gelatin nanofibers and gelatins up to 200 °C and increased chemiluminescent emission intensities for nanofibers treated with gamma radiation, at temperatures above 200 °C, compared to irradiated gelatins and non-irradiated nanofibers and gelatins. The electron paramagnetic (EPR) signals of DMPO adduct allowed for the identification of long-life HO radicals only for bovine and donkey gelatin nanofibers treated with a 20 kGy gamma radiation dose. Microbial contamination with aerobic microorganisms, yeasts, filamentous fungi, , , and of gelatin nanofibers treated with 10 kGy gamma radiation was under the limits required for pharmaceutical and topic formulations. Minor shifts of FTIR bands were observed at irradiation, indicating the preservation of secondary structure and stable properties of different-origin gelatin nanofibers.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2310-2861
2310-2861
DOI:10.3390/gels10040226