Internal States Influence the Representation and Modulation of Food Intake by Subthalamic Neurons

Deep brain stimulation of the subthalamic nucleus (STN) is an effective therapy for motor deficits in Parkinson’s disease (PD), but commonly causes weight gain in late-phase PD patients probably by increasing feeding motivation. It is unclear how STN neurons represent and modulate feeding behavior i...

Full description

Saved in:
Bibliographic Details
Published inNeuroscience bulletin Vol. 36; no. 11; pp. 1355 - 1368
Main Authors Wu, Haichuan, Yan, Xiang, Tang, Dongliang, Gu, Weixin, Luan, Yiwen, Cai, Haijiang, Zhou, Chunyi, Xiao, Cheng
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 01.11.2020
Springer
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Deep brain stimulation of the subthalamic nucleus (STN) is an effective therapy for motor deficits in Parkinson’s disease (PD), but commonly causes weight gain in late-phase PD patients probably by increasing feeding motivation. It is unclear how STN neurons represent and modulate feeding behavior in different internal states. In the present study, we found that feeding caused a robust activation of STN neurons in mice (GCaMP6 signal increased by 48.4% ± 7.2%, n = 9, P = 0.0003), and the extent varied with the size, valence, and palatability of food, but not with the repetition of feeding. Interestingly, energy deprivation increased the spontaneous firing rate (8.5 ± 1.5 Hz, n = 17, versus 4.7 ± 0.7 Hz, n = 18, P = 0.03) and the depolarization-induced spikes in STN neurons, as well as enhanced the STN responses to feeding. Optogenetic experiments revealed that stimulation and inhibition of STN neurons respectively reduced (by 11% ± 6%, n = 6, P = 0.02) and enhanced (by 36% ± 15%, n = 7, P = 0.03) food intake only in the dark phase. In conclusion, our results support the hypothesis that STN neurons are activated by feeding behavior, depending on energy homeostatic status and the palatability of food, and modulation of these neurons is sufficient to regulate food intake.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1673-7067
1995-8218
DOI:10.1007/s12264-020-00533-3