The differential effects of prostate stromal cells derived from different zones on prostate cancer epithelial cells under the action of sex hormones
It is well known that prostate cancer (PCa) occurs predominantly in the peripheral zone (PZ), whereas benign prostatic hyperplasia (BPH) typically develops in the transition zone. To identify possible mechanisms underlying zonal differences, we compared the effects of prostate stromal cells derived...
Saved in:
Published in | Asian journal of andrology Vol. 13; no. 6; pp. 798 - 805 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
China
Medknow Publications & Media Pvt. Ltd
01.11.2011
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | It is well known that prostate cancer (PCa) occurs predominantly in the peripheral zone (PZ), whereas benign prostatic hyperplasia (BPH) typically develops in the transition zone. To identify possible mechanisms underlying zonal differences, we compared the effects of prostate stromal cells derived from the peripheral zone (PZsc) and the transition zone (TZsc) on a PCa epithelial cell line (PC3) in the presence of sex hormones. First, we observed that androgen receptor (AR) mRNA was more highly expressed in PZsc than TZsc when the cells were treated with dihydrotestosterone (DHT) and β-oestradiol (E2) (P〈0.05). By ELISA, we looked for differences in the secretion of peptide growth factors from PZsc and TZsc. We found that keratinocyte growth factor (KGF) secretion increased with increasing concentrations of DHT (P〉0.01) and was higher in PZsc than TZsc. Under treatment with DHT plus E2, PZsc secreted more transforming growth factor-β1 (TGF-β1) than TZsc, but this pattern was reversed when the cells were treated with E2 only. With increasing concentrations of DHT, insulin-like growth factor-1 (IGF-1) secretion increased in PZsc but decreased in TZsc. To further characterize the effects of PZsc and TZsc on PC3 cells, we developed a coculture model and performed MTT assays, Western blot analysis and real-time RT-PCR. We found that PZsc promoted PC3 cell proliferation and progression better than TZsc, particularly when treated with 10 nmoll^- 1 DHT plus 10 nmoll^-1 E2. In conclusion, our data suggest that PZsc may have a greater capacity to induce PCa development and progression than TZsc via growth factors regulated by sex hormones. These findings provide possible mechanisms underlying zonal differences in prostate diseases, which may aid the search for novel therapeutic targets for PCa. |
---|---|
Bibliography: | androgen; growth factor; oestrogen; prostate cancer; stromal cell It is well known that prostate cancer (PCa) occurs predominantly in the peripheral zone (PZ), whereas benign prostatic hyperplasia (BPH) typically develops in the transition zone. To identify possible mechanisms underlying zonal differences, we compared the effects of prostate stromal cells derived from the peripheral zone (PZsc) and the transition zone (TZsc) on a PCa epithelial cell line (PC3) in the presence of sex hormones. First, we observed that androgen receptor (AR) mRNA was more highly expressed in PZsc than TZsc when the cells were treated with dihydrotestosterone (DHT) and β-oestradiol (E2) (P〈0.05). By ELISA, we looked for differences in the secretion of peptide growth factors from PZsc and TZsc. We found that keratinocyte growth factor (KGF) secretion increased with increasing concentrations of DHT (P〉0.01) and was higher in PZsc than TZsc. Under treatment with DHT plus E2, PZsc secreted more transforming growth factor-β1 (TGF-β1) than TZsc, but this pattern was reversed when the cells were treated with E2 only. With increasing concentrations of DHT, insulin-like growth factor-1 (IGF-1) secretion increased in PZsc but decreased in TZsc. To further characterize the effects of PZsc and TZsc on PC3 cells, we developed a coculture model and performed MTT assays, Western blot analysis and real-time RT-PCR. We found that PZsc promoted PC3 cell proliferation and progression better than TZsc, particularly when treated with 10 nmoll^- 1 DHT plus 10 nmoll^-1 E2. In conclusion, our data suggest that PZsc may have a greater capacity to induce PCa development and progression than TZsc via growth factors regulated by sex hormones. These findings provide possible mechanisms underlying zonal differences in prostate diseases, which may aid the search for novel therapeutic targets for PCa. 31-1795/R ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 1008-682X 1745-7262 |
DOI: | 10.1038/aja.2011.22 |