Resting State fMRI: Going Through the Motions
Resting state functional magnetic resonance imaging (rs-fMRI) has become an indispensable tool in neuroscience research. Despite this, rs-fMRI signals are easily contaminated by artifacts arising from movement of the head during data collection. The artifacts can be problematic even for motions on t...
Saved in:
Published in | Frontiers in neuroscience Vol. 13; p. 825 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
13.08.2019
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Resting state functional magnetic resonance imaging (rs-fMRI) has become an indispensable tool in neuroscience research. Despite this, rs-fMRI signals are easily contaminated by artifacts arising from movement of the head during data collection. The artifacts can be problematic even for motions on the millimeter scale, with complex spatiotemporal properties that can lead to substantial errors in functional connectivity estimates. Effective correction methods must be employed, therefore, to distinguish true functional networks from motion-related noise. Research over the last three decades has produced numerous correction methods, many of which must be applied in combination to achieve satisfactory data quality. Subject instruction, training, and mild restraints are helpful at the outset, but usually insufficient. Improvements come from applying multiple motion correction algorithms retrospectively after rs-fMRI data are collected, although residual artifacts can still remain in cases of elevated motion, which are especially prevalent in patient populations. Although not commonly adopted at present, "real-time" correction methods are emerging that can be combined with retrospective methods and that promise better correction and increased rs-fMRI signal sensitivity. While the search for the ideal motion correction protocol continues, rs-fMRI research will benefit from good disclosure practices, such as: (1) reporting motion-related quality control metrics to provide better comparison between studies; and (2) including motion covariates in group-level analyses to limit the extent of motion-related confounds when studying group differences. |
---|---|
AbstractList | Resting state functional magnetic resonance imaging (rs-fMRI) has become an indispensable tool in neuroscience research. Despite this, rs-fMRI signals are easily contaminated by artifacts arising from movement of the head during data collection. The artifacts can be problematic even for motions on the millimeter scale, with complex spatiotemporal properties that can lead to substantial errors in functional connectivity estimates. Effective correction methods must be employed, therefore, to distinguish true functional networks from motion-related noise. Research over the last three decades has produced numerous correction methods, many of which must be applied in combination to achieve satisfactory data quality. Subject instruction, training, and mild restraints are helpful at the outset, but usually insufficient. Improvements come from applying multiple motion correction algorithms retrospectively after rs-fMRI data are collected, although residual artifacts can still remain in cases of elevated motion, which are especially prevalent in patient populations. Although not commonly adopted at present, “real-time” correction methods are emerging that can be combined with retrospective methods and that promise better correction and increased rs-fMRI signal sensitivity. While the search for the ideal motion correction protocol continues, rs-fMRI research will benefit from good disclosure practices, such as: (1) reporting motion-related quality control metrics to provide better comparison between studies; and (2) including motion covariates in group-level analyses to limit the extent of motion-related confounds when studying group differences. Resting state functional magnetic resonance imaging (rs-fMRI) has become an indispensable tool in neuroscience research. Despite this, rs-fMRI signals are easily contaminated by artifacts arising from movement of the head during data collection. The artifacts can be problematic even for motions on the millimetre scale, with complex spatiotemporal properties that can lead to substantial errors in functional connectivity estimates. Effective correction methods must be employed, therefore, to distinguish true functional networks from motion-related noise. Research over the last three decades has produced numerous correction methods, many of which must be applied in combination to achieve satisfactory data quality. Subject instruction, training and mild restraints are helpful at the outset, but usually insufficient. Improvements come from applying multiple motion correction algorithms retrospectively after rs-fMRI data are collected, although residual artifacts can still remain in cases of elevated motion, which are especially prevalent in patient populations. Although not commonly adopted at present, "real-time" correction methods are emerging that can be combined with retrospective methods and that promise better correction and increased rs-fMRI signal sensitivity. While the search for the ideal motion correction protocol continues, rs-fMRI research will benefit from good disclosure practices, such as: 1) reporting motion-related quality control metrics to provide better comparison between studies; and 2) including motion covariates in group-level analyses to limit the extent of motion-related confounds when studying group differences. Resting state functional magnetic resonance imaging (rs-fMRI) has become an indispensable tool in neuroscience research. Despite this, rs-fMRI signals are easily contaminated by artifacts arising from movement of the head during data collection. The artifacts can be problematic even for motions on the millimeter scale, with complex spatiotemporal properties that can lead to substantial errors in functional connectivity estimates. Effective correction methods must be employed, therefore, to distinguish true functional networks from motion-related noise. Research over the last three decades has produced numerous correction methods, many of which must be applied in combination to achieve satisfactory data quality. Subject instruction, training, and mild restraints are helpful at the outset, but usually insufficient. Improvements come from applying multiple motion correction algorithms retrospectively after rs-fMRI data are collected, although residual artifacts can still remain in cases of elevated motion, which are especially prevalent in patient populations. Although not commonly adopted at present, "real-time" correction methods are emerging that can be combined with retrospective methods and that promise better correction and increased rs-fMRI signal sensitivity. While the search for the ideal motion correction protocol continues, rs-fMRI research will benefit from good disclosure practices, such as: (1) reporting motion-related quality control metrics to provide better comparison between studies; and (2) including motion covariates in group-level analyses to limit the extent of motion-related confounds when studying group differences.Resting state functional magnetic resonance imaging (rs-fMRI) has become an indispensable tool in neuroscience research. Despite this, rs-fMRI signals are easily contaminated by artifacts arising from movement of the head during data collection. The artifacts can be problematic even for motions on the millimeter scale, with complex spatiotemporal properties that can lead to substantial errors in functional connectivity estimates. Effective correction methods must be employed, therefore, to distinguish true functional networks from motion-related noise. Research over the last three decades has produced numerous correction methods, many of which must be applied in combination to achieve satisfactory data quality. Subject instruction, training, and mild restraints are helpful at the outset, but usually insufficient. Improvements come from applying multiple motion correction algorithms retrospectively after rs-fMRI data are collected, although residual artifacts can still remain in cases of elevated motion, which are especially prevalent in patient populations. Although not commonly adopted at present, "real-time" correction methods are emerging that can be combined with retrospective methods and that promise better correction and increased rs-fMRI signal sensitivity. While the search for the ideal motion correction protocol continues, rs-fMRI research will benefit from good disclosure practices, such as: (1) reporting motion-related quality control metrics to provide better comparison between studies; and (2) including motion covariates in group-level analyses to limit the extent of motion-related confounds when studying group differences. |
Author | Churchill, Nathan W. Schweizer, Tom A. Graham, S. J. Maknojia, Sanam |
AuthorAffiliation | 1 Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre , Toronto, ON , Canada 2 Keenan Research Centre for Biomedical Science, St. Michael’s Hospital , Toronto, ON , Canada 5 Department of Medical Biophysics, Faculty of Medicine, University of Toronto , Toronto, ON , Canada 4 Institute of Biomaterials and Biomedical Engineering, Faculty of Medicine, University of Toronto , Toronto, ON , Canada 3 Division of Neurosurgery, Faculty of Medicine, University of Toronto , Toronto, ON , Canada |
AuthorAffiliation_xml | – name: 1 Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre , Toronto, ON , Canada – name: 2 Keenan Research Centre for Biomedical Science, St. Michael’s Hospital , Toronto, ON , Canada – name: 3 Division of Neurosurgery, Faculty of Medicine, University of Toronto , Toronto, ON , Canada – name: 4 Institute of Biomaterials and Biomedical Engineering, Faculty of Medicine, University of Toronto , Toronto, ON , Canada – name: 5 Department of Medical Biophysics, Faculty of Medicine, University of Toronto , Toronto, ON , Canada |
Author_xml | – sequence: 1 givenname: Sanam surname: Maknojia fullname: Maknojia, Sanam – sequence: 2 givenname: Nathan W. surname: Churchill fullname: Churchill, Nathan W. – sequence: 3 givenname: Tom A. surname: Schweizer fullname: Schweizer, Tom A. – sequence: 4 givenname: S. J. surname: Graham fullname: Graham, S. J. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31456656$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kd1rFDEUxYNU7Ie--yQDvvgya74n44MgRetCS6Gt4FvIZG52s8wmNZkp9L83s1tLW_AhJNyc88vNPcfoIMQACL0neMGYaj-74ENeUEzaBcaKilfoiEhJay7Y74Mn50N0nPMGY0kVp2_QISNcSCnkEaqvII8-rKrr0YxQuYur5ZfqLM6Vm3WK02pdjWuoLuLoY8hv0WtnhgzvHvYT9OvH95vTn_X55dny9Nt5bXmLx5oaBfMy0IFwApq-pT3hnPaNEI3C1jZCik62jPQdUNoIRkTnTK_6TjIq2Ala7rl9NBt9m_zWpHsdjde7QkwrbdLo7QBaOcwIw45ibucHWgFYGWdaxqGgaWF93bNup24LvYUwJjM8gz6_CX6tV_FOywZjSlUBfHoApPhnKuPSW58tDIMJEKesi4YoLgklRfrxhXQTpxTKqIqqYYwzpWbgh6cdPbbyL5UiwHuBTTHnBO5RQrCeg9e74PUcvN4FXyzyhcX6kmgJrfzJD_83_gVADrFW |
CitedBy_id | crossref_primary_10_3389_fpsyt_2021_533428 crossref_primary_10_3389_fnins_2022_1017211 crossref_primary_10_1002_hbm_26289 crossref_primary_10_1038_s41598_021_81219_2 crossref_primary_10_1002_hbm_25590 crossref_primary_10_1001_jamanetworkopen_2024_13508 crossref_primary_10_1007_s10278_024_01189_5 crossref_primary_10_1016_j_jneumeth_2021_109084 crossref_primary_10_1016_j_ynirp_2022_100085 crossref_primary_10_3389_fnins_2021_655247 crossref_primary_10_1007_s12021_022_09565_8 crossref_primary_10_1055_a_1892_1894 crossref_primary_10_1016_j_bosn_2024_03_001 crossref_primary_10_1093_braincomms_fcae220 crossref_primary_10_3389_fninf_2022_843114 crossref_primary_10_1111_bdi_13336 crossref_primary_10_1176_appi_ajp_20230249 crossref_primary_10_3389_fmed_2021_687420 crossref_primary_10_3389_fneur_2022_843953 crossref_primary_10_1016_j_neuroimage_2022_119711 crossref_primary_10_1016_j_radi_2020_06_001 crossref_primary_10_1371_journal_pone_0269154 crossref_primary_10_3389_fneur_2022_967794 crossref_primary_10_1097_RCT_0000000000001743 crossref_primary_10_1093_psyrad_kkab003 crossref_primary_10_1002_jmri_28472 crossref_primary_10_1016_j_nicl_2020_102385 crossref_primary_10_1126_sciadv_abm7825 crossref_primary_10_1002_hbm_24889 crossref_primary_10_1016_j_softx_2020_100598 crossref_primary_10_1002_hbm_25771 crossref_primary_10_1016_j_neuroimage_2023_120176 crossref_primary_10_3389_fnagi_2021_746236 crossref_primary_10_3389_fnins_2023_1096232 crossref_primary_10_1177_02841851241280115 crossref_primary_10_1109_TNNLS_2023_3282961 crossref_primary_10_1152_ajprenal_00423_2023 crossref_primary_10_3390_diagnostics12051032 crossref_primary_10_1016_j_ynirp_2021_100026 crossref_primary_10_1038_s41598_024_79827_9 crossref_primary_10_3174_ajnr_A8067 crossref_primary_10_31083_j_jin2102060 crossref_primary_10_1016_j_neubiorev_2022_104780 crossref_primary_10_3389_fnins_2021_602170 crossref_primary_10_3389_fnins_2023_1092125 crossref_primary_10_3390_s24123737 crossref_primary_10_1162_netn_a_00216 crossref_primary_10_3389_fnins_2022_867243 crossref_primary_10_1016_j_neuroimage_2022_118925 crossref_primary_10_1016_j_psychres_2024_115868 crossref_primary_10_3389_fpsyt_2024_1323109 crossref_primary_10_1007_s11682_023_00769_3 crossref_primary_10_1089_brain_2020_1005 |
Cites_doi | 10.3389/fncom.2018.00008 10.1016/j.neuroimage.2015.05.015 10.1016/j.neuroimage.2010.04.246 10.1016/j.neuroimage.2011.12.063 10.1016/J.NEURON.2007.10.038 10.1016/j.dcn.2017.01.011 10.1016/j.neuroimage.2015.03.013 10.1002/mrm.26838 10.1016/j.schres.2004.09.025 10.1016/j.neuroimage.2005.07.005 10.1016/j.neuroimage.2017.12.073 10.1016/j.neuroimage.2011.10.018 10.1007/s00431-010-1181-z 10.1016/j.neuroimage.2011.10.039 10.2174/2213385204666160425155104 10.1002/mrm.22200 10.1016/j.mri.2016.06.005 10.1371/journal.pone.0082107 10.1016/j.neuroimage.2012.06.019 10.1002/mrm.23101 10.1002/mrm.24845 10.1002/mrm.23097 10.1002/mrm.1910390210 10.1002/mrm.10145 10.1006/nimg.2001.0829 10.1006/NIMG.2000.0719 10.1016/j.neuroimage.2017.08.025 10.1002/mrm.24285 10.3389/fnhum.2013.00343 10.1016/j.neuroimage.2005.02.021 10.1002/mrm.20079 10.1016/j.neuroimage.2016.12.036 10.1016/j.mri.2007.05.007 10.1097/00004728-199609000-00003 10.1002/mrm.24943 10.1002/mrm.1910360316 10.1016/j.brainres.2012.09.029 10.1016/S1053-8119(09)71160-71167 10.1016/j.neuroimage.2006.01.039 10.1097/00004728-199109000-199109034 10.1002/mrm.20605 10.1371/journal.pbio.1000157 10.1089/brain.2014.0244 10.1038/s41592-018-0235-234 10.1016/j.neuroimage.2011.12.061 10.1006/NIMG.1996.0059 10.1016/j.neuroimage.2016.12.002 10.1002/mrm.23220 10.1016/j.neuroimage.2007.10.013 10.1002/nbm.1371 10.1016/j.jneumeth.2016.06.005 10.1089/brain.2017.0491 10.1016/j.neuroimage.2016.11.014 10.1002/mrm.1910390215 10.1016/j.neuroimage.2012.08.052 10.1016/j.neuroimage.2015.02.063 10.1118/1.3583814 10.1016/j.neuroimage.2018.01.023 10.3389/fnins.2016.00591 10.1016/S1053-8119(02)91132-91138 10.1148/radiol.2018180180 10.1016/j.neuroimage.2012.11.052 10.1136/jnnp.2009.191460 10.1016/j.neuroimage.2008.09.036 10.1006/nimg.2001.0746 10.1002/mrm.26951 10.1016/j.neuroimage.2008.02.052 10.1006/nimg.1998.0424 10.1002/nbm.1042 10.1016/j.mri.2007.11.001 10.1371/journal.pone.0031147 10.1002/mrm.1910350312 10.1016/j.neuroimage.2017.03.020 10.1002/hbm.460030303 10.1089/brain.2014.0321 10.1073/pnas.0913110107 10.1016/j.neuroimage.2018.02.036 10.1016/j.mri.2007.03.009 10.1088/0031-9155/46/12/318 10.1002/(sici)1097-0193(1999)8:2/3<80::aid-hbm2>3.0.co;2-c 10.1016/j.neuroimage.2012.08.004 10.1097/00004728-199801000-00027 10.1016/j.neuroimage.2013.05.116 10.1097/MD.0000000000014323 10.1007/s00247-013-2798-2797 10.1371/journal.pone.0048088 10.1002/hbm.20219 10.1002/mrm.22082 10.3389/fnagi.2018.00094 10.1002/hbm.22150 10.1016/j.neuroimage.2007.04.042 10.1002/mrm.26877 10.1016/j.neuroimage.2014.03.028 10.1148/radiology.173.1.2781017 10.1016/j.neuroimage.2007.07.004 10.1016/j.neuroimage.2013.05.099 10.1016/j.neuroimage.2016.11.052 10.23919/EUSIPCO.2017.8081690 10.1016/j.neuroimage.2013.05.039 10.1016/j.compmedimag.2007.04.002 10.1016/j.neuroimage.2014.10.044 10.1523/JNEUROSCI.3872-16.2017 10.1073/pnas.0800376105 10.1016/j.media.2016.08.006 10.1002/mrm.24309 10.1117/12.463613 10.1089/brain.2011.0065 10.1371/journal.pone.0015710 10.1002/mrm.10587 10.1016/j.neuroimage.2012.09.043 10.1016/j.conb.2005.03.001 10.1002/1522-2594(200009)44:3<457::aid-mrm17>3.3.co;2-i 10.1002/mrm.1910340409 10.1002/mrm.1910310307 10.1002/mrm.22176 10.1006/nimg.1999.0515 10.1007/s10548-014-0358-356 10.1002/mrm.26951.5 10.1016/j.neuroimage.2013.03.004 10.1016/j.neuroimage.2011.07.044 10.1007/s10334-015-0493-4 10.1002/mrm.26390 10.1002/mrm.22780 10.1016/j.neuroimage.2015.07.069 10.1016/j.neuroimage.2015.08.053 10.1016/j.tics.2013.09.016 10.1016/j.neuroimage.2013.11.046 10.1002/jmri.1880070219 10.1002/mrm.24119 10.1016/j.mri.2006.09.042 10.1002/mrm.10012 10.1016/j.pscychresns.2006.12.009 10.1016/j.neuroimage.2013.08.048 10.1016/j.media.2017.04.010 10.1016/j.acra.2004.04.022 10.1002/hbm.21238 10.1109/TMI.2019.2891774 10.1007/978-3-7091-1482-7_3 10.1006/nimg.2002.1200 10.3389/fped.2018.00146 10.1016/j.neuroimage.2015.02.064 10.1016/j.neuroimage.2005.05.058 10.1016/j.neuroimage.2014.01.056 10.1002/mrm.27343 10.1006/nimg.2001.1054 10.1016/J.NEUROIMAGE.2014.06.038 10.1006/nimg.2001.0869 10.1016/j.neuroimage.2014.03.012 10.1002/mrm.1910390305 10.1073/pnas.1301725110 10.1006/cbmr.1996.0014 10.1002/hbm.20616 10.1109/TMI.2003.819294 10.1002/(sici)1522-2594(199905)41:5<964::aid-mrm16>3.3.co;2-4 10.1016/j.neuroimage.2010.05.004 10.1016/j.neuroimage.2009.05.005 10.1002/mrm.24201 10.1002/mrm.23228 10.1006/nimg.1997.0289 |
ContentType | Journal Article |
Copyright | 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2019 Maknojia, Churchill, Schweizer and Graham. 2019 Maknojia, Churchill, Schweizer and Graham |
Copyright_xml | – notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2019 Maknojia, Churchill, Schweizer and Graham. 2019 Maknojia, Churchill, Schweizer and Graham |
DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3389/fnins.2019.00825 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1662-453X |
ExternalDocumentID | oai_doaj_org_article_8f03130f204c42d795e08afa934ee222 PMC6700228 31456656 10_3389_fnins_2019_00825 |
Genre | Journal Article Review |
GeographicLocations | Canada |
GeographicLocations_xml | – name: Canada |
GrantInformation_xml | – fundername: Natural Sciences and Engineering Research Council of Canada |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFO ACGFS ACXDI ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EBS EJD EMOBN F5P FRP GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM W2D C1A NPM 3V. 7XB 8FK PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c490t-2a8e2a8eaebe5f5e7d92d1442d755780cc7565b6931dbe2275315bfad8db63253 |
IEDL.DBID | M48 |
ISSN | 1662-453X 1662-4548 |
IngestDate | Wed Aug 27 01:27:51 EDT 2025 Thu Aug 21 13:51:55 EDT 2025 Fri Jul 11 09:57:53 EDT 2025 Fri Jul 25 11:52:46 EDT 2025 Thu Apr 03 06:54:40 EDT 2025 Tue Jul 01 01:01:37 EDT 2025 Thu Apr 24 23:03:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | image processing noise motion artifacts resting state fMRI motion compensation |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c490t-2a8e2a8eaebe5f5e7d92d1442d755780cc7565b6931dbe2275315bfad8db63253 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 Edited by: Shella Keilholz, Emory University, United States This article was submitted to Brain Imaging Methods, a section of the journal Frontiers in Neuroscience Reviewed by: Veena A. Nair, University of Wisconsin-Madison, United States; Jodie Reanna Gawryluk, University of Victoria, Canada |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnins.2019.00825 |
PMID | 31456656 |
PQID | 2273343888 |
PQPubID | 4424402 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8f03130f204c42d795e08afa934ee222 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6700228 proquest_miscellaneous_2281846121 proquest_journals_2273343888 pubmed_primary_31456656 crossref_primary_10_3389_fnins_2019_00825 crossref_citationtrail_10_3389_fnins_2019_00825 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-13 |
PublicationDateYYYYMMDD | 2019-08-13 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-13 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Lausanne |
PublicationTitle | Frontiers in neuroscience |
PublicationTitleAlternate | Front Neurosci |
PublicationYear | 2019 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | Johnstone (B74) 2006; 27 Eschelbach (B40) 2017 Carbonell (B19) 2011; 1 Ferrante (B47) 2017; 39 Tohka (B144) 2008; 39 Haller (B65) 2014; 27 Todd (B143) 2015; 113 Lund (B88) 2006; 29 Morgan (B92) 2007; 31 Jezzard (B72) 1999; 8 Maclaren (B90) 2018; 79 Weissenbacher (B153) 2009; 47 Pruessmann (B116) 2006; 19 Seto (B130) 2001; 14 Churchill (B24); 33 Patel (B109) 2014; 95 Satterthwaite (B126) 2012; 60 Qin (B119) 2012; 1484 Lin (B86) 2018; 10 Muschelli (B98) 2014; 96 Engelhardt (B36) 2017; 25 Parkes (B108) 2018; 171 Haeberlin (B62) 2014 Eviatar (B42) 1999 Roopchansingh (B122) 2003; 50 Ooi (B104) 2011; 66 Faraji-Dana (B44); 34 Birn (B14) 2013; 83 Graham (B57) 2016; 4 Thomas (B141) 2002; 17 Beall (B7) 2007; 37 Oakes (B99) 2005; 28 Patriat (B110) 2015; 5 Wylie (B159) 2014; 35 Ojemann (B100) 1997; 6 Parker (B107) 2017; 35 Chen (B22) 2015 Singh (B133) 2015; 28 Yuan (B165) 2009; 30 Kundu (B80) 2013; 110 Buur (B18) 2009; 22 Churchill (B25); 7 Righini (B121) 1996; 20 Lin (B87) 2010; 63 Thesen (B139) 2000; 44 Krämer (B78) 2012; 68 Supekar (B137) 2009; 7 Kim (B76) 1999; 41 Lee (B81) 1998; 39 van Dijk (B147) 2012; 59 Zaitsev (B168) 2017; 154 Rotenberg (B123) 2013; 69 Freire (B48) 2001; 14 Ooi (B103); 69 Visser (B150) 2012; 68 Yan (B161) 2013; 76 Wastiaux (B152) 2006 Zaitsev (B169) 2006; 31 Power (B115) 2015; 105 Beall (B8) 2014; 101 Schültke (B129) 2013; 117 Schölvinck (B128) 2010; 107 Ooi (B102); 70 Tisdall (B142) 2012; 68 Murphy (B96) 2009; 44 Andrews-Hanna (B3) 2007; 56 Woods (B157) 1998; 22 Anticevic (B4) 2008; 41 Hallquist (B66) 2013; 82 De Bie (B30) 2010; 169 Smith (B135); 17 Shirer (B132) 2015; 117 Ding (B32) 2013; 8 Bright (B17) 2013; 64 Bettus (B12) 2010; 81 Muresan (B95) 2002 Elliott (B35) 2004; 11 Pruim (B118); 112 Chu (B23) 2018 Wong (B156) 2016; 124 Epstein (B37) 2007; 155 Vytvarová (B151) 2017 Welch (B154) 2002; 47 Friston (B49) 1995; 2 Tucholka (B145) 2012; 63 Frost (B51) 2018 Li (B85) 2019; 98 Peer (B111) 2017; 37 Greene (B59) 2018; 171 Hajnal (B64) 1994; 31 Dosenbach (B33) 2017; 161 Van de Moortele (B146) 2002; 47 Dagli (B29) 1999; 9 Ooi (B105) 2009; 62 Hutton (B70) 2002; 16 Feinberg (B46) 2010; 5 Green (B58) 1994; 35 Satterthwaite (B125) 2013; 64 Xu (B160) 2018; 173 Kim (B77) 2008; 26 Erhart (B38) 1998; 39 Esteban (B41) 2019; 16 Huijbers (B69) 2017; 147 Perlbarg (B112) 2007; 25 Pruim (B117); 112 Salimi-Khorshidi (B124) 2014; 90 Chen (B21) 2012; 68 Zahneisen (B167); 92 Behzadi (B9) 2007; 37 Bettinardi (B11) 1991; 15 Aranovitch (B5) 2018; 79 van Niekerk (B148) 2019; 38 Graedel (B56) 2017; 78 Sutton (B138) 2004; 51 Wu (B158) 1997; 7 Yancey (B162) 2011; 38 Friston (B50) 1996; 35 Ciric (B26) 2017; 154 Gargouri (B52) 2018; 12 Zeffiro (B170) 1996; 4 Aksoy (B1) 2012; 67 Boksman (B16) 2005; 75 Barnea-Goraly (B6) 2014; 44 Setsompop (B131) 2012; 67 Thieba (B140) 2018; 6 Murphy (B97) 2017; 154 Orchard (B106) 2003; 22 Mowinckel (B93) 2012; 63 Kecskemeti (B75) 2018; 289 Yuan (B164) 2016; 10 Ehman (B34) 1989; 173 Lee (B82) 1996; 36 Griffanti (B60) 2017; 154 Yeo (B163) 2008; 26 Zahneisen (B166); 72 Grootoonk (B61) 2000; 11 Lemieux (B84) 2007; 25 Fair (B43) 2008; 105 Carp (B20) 2013; 76 Biswal (B15) 1995; 34 Golestani (B55) 2018; 8 Hahamy (B63) 2014; 4 Lund (B89) 2005; 26 Power (B114) 2014; 84 White (B155) 2010; 63 Eschelbach (B39) 2018; 81 Stanisz (B136) 2005; 54 Jo (B73) 2010; 52 Lee (B83) 2010; 52 Andersson (B2) 2001; 13 Maclaren (B91) 2012; 7 Jenkinson (B71) 2002; 17 Faraji-Dana (B45); 270 Krueger (B79) 2006 Bhaganagarapu (B13) 2013; 7 Cox (B28) 1996; 29 Glover (B54) 1998; 39 Muraskin (B94) 2013; 68 Ollinger (B101) 2009; 47 Benjaminsen (B10) 2016 Hoinkiss (B67) 2018 Smith (B134); 80 Glover (B53) 2012; 62 Vanderwal (B149) 2015; 122 Desjardins (B31) 2001; 13 Hoinkiss (B68) 2017; 78 Raj (B120) 2001; 46 Power (B113) 2012; 59 Courchesne (B27) 2005; 15 |
References_xml | – volume: 12 year: 2018 ident: B52 article-title: The influence of preprocessing steps on graph theory measures derived from resting state fMRI. publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2018.00008 – volume: 117 start-page: 67 year: 2015 ident: B132 article-title: Optimization of rs-fMRI Pre-processing for enhanced signal-noise separation, test-retest reliability, and group discrimination. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.05.015 – year: 2015 ident: B22 article-title: Multimodal MRI neuroimaging with motion compensation based on particle filtering. publication-title: ArXiv – volume: 52 start-page: 571 year: 2010 ident: B73 article-title: Mapping sources of correlation in resting state FMRI, with artifact detection and removal. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.04.246 – volume: 60 start-page: 623 year: 2012 ident: B126 article-title: Impact of in-scanner head motion on multiple measures of functional connectivity: relevance for studies of neurodevelopment in youth. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.12.063 – volume: 56 start-page: 924 year: 2007 ident: B3 article-title: Disruption of large-scale brain systems in advanced aging. publication-title: Neuron doi: 10.1016/J.NEURON.2007.10.038 – volume: 25 start-page: 58 year: 2017 ident: B36 article-title: Children’s head motion during fMRI tasks is heritable and stable over time. publication-title: Dev. Cogn. Neurosci. doi: 10.1016/j.dcn.2017.01.011 – volume: 113 start-page: 1 year: 2015 ident: B143 article-title: Prospective motion correction of 3D echo-planar imaging data for functional MRI using optical tracking. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.03.013 – volume: 79 start-page: 1911 year: 2018 ident: B90 article-title: Prospective motion correction using coil-mounted cameras: cross-calibration considerations. publication-title: Magn. Reson. Med. doi: 10.1002/mrm.26838 – volume: 75 start-page: 247 year: 2005 ident: B16 article-title: A 4.0-T fMRI study of brain connectivity during word fluency in first-episode schizophrenia. publication-title: Schizophr. Res. doi: 10.1016/j.schres.2004.09.025 – volume: 29 start-page: 54 year: 2006 ident: B88 article-title: Non-white noise in fMRI: does modelling have an impact? publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.07.005 – volume: 171 start-page: 415 year: 2018 ident: B108 article-title: An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.12.073 – volume: 59 start-page: 2142 year: 2012 ident: B113 article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.10.018 – volume: 169 start-page: 1079 year: 2010 ident: B30 article-title: Preparing children with a mock scanner training protocol results in high quality structural and functional MRI scans. publication-title: Eur. J. Pediatr. doi: 10.1007/s00431-010-1181-z – volume: 62 start-page: 706 year: 2012 ident: B53 article-title: Spiral imaging in fMRI. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.10.039 – volume: 4 start-page: 96 year: 2016 ident: B57 article-title: fMRI simulator training to suppress head motion. publication-title: Neurosci. Biomed. Eng. doi: 10.2174/2213385204666160425155104 – volume: 63 start-page: 339 year: 2010 ident: B87 article-title: Motion correction using an enhanced floating navigator and GRAPPA operations. publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22200 – volume: 34 start-page: 1206 ident: B44 article-title: A robust method for suppressing motion-induced coil sensitivity variations during prospective correction of head motion in fMRI. publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2016.06.005 – volume: 8 year: 2013 ident: B32 article-title: Spatio-temporal correlation tensors reveal functional structure in human brain. publication-title: PLoS One doi: 10.1371/journal.pone.0082107 – volume: 63 start-page: 1443 year: 2012 ident: B145 article-title: An empirical comparison of surface-based and volume-based group studies in neuroimaging. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.06.019 – volume: 67 start-page: 1237 year: 2012 ident: B1 article-title: Hybrid prospective and retrospective head motion correction to mitigate cross-calibration errors. publication-title: Magn. Reson. Med. doi: 10.1002/mrm.23101 – start-page: 6008 year: 2014 ident: B62 article-title: Motion Correction of EPI sequences using their intrinsic high-frequency content publication-title: Proceedings of the International Society for Magnetic Resonance in Medicine – start-page: 389 year: 2018 ident: B23 article-title: Cortical depth dependent resting state fMRI with motion correction publication-title: Proceedings of the Joint Annual Meeting ISMRM-ESMRMB – volume: 70 start-page: 639 ident: B102 article-title: Prospective motion correction using inductively coupled wireless RF coils. publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24845 – volume: 67 start-page: 1210 year: 2012 ident: B131 article-title: Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. publication-title: Magn. Reson. Med. doi: 10.1002/mrm.23097 – volume: 39 start-page: 234 year: 1998 ident: B81 article-title: A prospective approach to correct for inter-image head rotation in FMRI. publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910390210 – volume: 47 start-page: 888 year: 2002 ident: B146 article-title: Respiration-induced B0 fluctuations and their spatial distribution in the human brain at 7 Tesla. publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10145 – volume: 14 start-page: 284 year: 2001 ident: B130 article-title: Quantifying head motion associated with motor tasks used in fMRI. publication-title: Neuroimage doi: 10.1006/nimg.2001.0829 – volume: 13 start-page: 751 year: 2001 ident: B31 article-title: Removal of confounding effects of global signal in functional MRI analyses. publication-title: Neuroimage doi: 10.1006/NIMG.2000.0719 – volume: 161 start-page: 80 year: 2017 ident: B33 article-title: Real-time motion analytics during brain MRI improve data quality and reduce costs. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.08.025 – volume: 69 start-page: 803 ident: B103 article-title: Combined prospective and retrospective correction to reduce motion-induced image misalignment and geometric distortions in EPI. publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24285 – volume: 7 year: 2013 ident: B13 article-title: An automated method for identifying artifact in independent component analysis of resting-state fMRI. publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2013.00343 – volume: 26 start-page: 960 year: 2005 ident: B89 article-title: Motion or activity: their role in intra-and inter-subject variation in fMRI. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.02.021 – volume: 51 start-page: 1194 year: 2004 ident: B138 article-title: Dynamic field map estimation using a spiral-in/spiral-out acquisition. publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20079 – volume: 154 start-page: 188 year: 2017 ident: B60 article-title: Hand classification of fMRI ICA noise components. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.12.036 – volume: 26 start-page: 147 year: 2008 ident: B77 article-title: Comprehensive mathematical simulation of functional magnetic resonance imaging time series including motion-related image distortion and spin saturation effect. publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2007.05.007 – volume: 20 start-page: 702 year: 1996 ident: B121 article-title: Functional MRI: primary motor cortex localization in patients with brain tumors. publication-title: J. Comput. Assist. Tomogr. doi: 10.1097/00004728-199609000-00003 – volume: 72 start-page: 381 ident: B166 article-title: Propagation of calibration errors in prospective motion correction using external tracking. publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24943 – volume: 36 start-page: 436 year: 1996 ident: B82 article-title: Real-time adaptive motion correction in functional MRI. publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910360316 – volume: 1484 start-page: 50 year: 2012 ident: B119 article-title: A preliminary study of alterations in default network connectivity in post-traumatic stress disorder patients following recent trauma. publication-title: Brain Res. doi: 10.1016/j.brainres.2012.09.029 – volume: 47 year: 2009 ident: B101 article-title: The secret life of motion covariates. publication-title: Neuroimage doi: 10.1016/S1053-8119(09)71160-71167 – volume: 31 start-page: 1038 year: 2006 ident: B169 article-title: Magnetic resonance imaging of freely moving objects: prospective real-time motion correction using an external optical motion tracking system. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.01.039 – volume: 15 start-page: 886 year: 1991 ident: B11 article-title: Head holder for PET, CT, and MR studies. publication-title: J. Comput. Assist. Tomogr. doi: 10.1097/00004728-199109000-199109034 – volume: 54 start-page: 507 year: 2005 ident: B136 article-title: T1, T2 relaxation and magnetization transfer in tissue at 3T. publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20605 – volume: 7 year: 2009 ident: B137 article-title: Development of large-scale functional brain networks in children. publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000157 – volume: 4 start-page: 395 year: 2014 ident: B63 article-title: Save the global: global signal connectivity as a tool for studying clinical populations with functional magnetic resonance imaging. publication-title: Brain Connect. doi: 10.1089/brain.2014.0244 – volume: 16 start-page: 111 year: 2019 ident: B41 article-title: fMRIPrep: a robust preprocessing pipeline for functional MRI. publication-title: Nat. Methods doi: 10.1038/s41592-018-0235-234 – volume: 76 start-page: 436 year: 2013 ident: B20 article-title: Optimizing the order of operations for movement scrubbing: comment on power et al. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.12.061 – volume: 4 start-page: S95 year: 1996 ident: B170 article-title: Clinical functional image analysis: artifact detection and reduction. publication-title: Neuroimage doi: 10.1006/NIMG.1996.0059 – volume: 147 start-page: 111 year: 2017 ident: B69 article-title: Less head motion during MRI under task than resting-state conditions. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.12.002 – volume: 68 start-page: 140 year: 2012 ident: B78 article-title: Functional magnetic resonance imaging using PROPELLER-EPI. publication-title: Magn. Reson. Med. doi: 10.1002/mrm.23220 – volume: 39 start-page: 1227 year: 2008 ident: B144 article-title: Automatic independent component labeling for artifact removal in fMRI. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.10.013 – volume: 22 start-page: 551 year: 2009 ident: B18 article-title: A dual echo approach to removing motion artefacts in fMRI time series. publication-title: NMR Biomed. doi: 10.1002/nbm.1371 – volume: 270 start-page: 46 ident: B45 article-title: Interactions between head motion and coil sensitivity in accelerated fMRI. publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2016.06.005 – volume: 8 start-page: 82 year: 2018 ident: B55 article-title: Simultaneous multislice resting-state functional magnetic resonance imaging at 3 Tesla: slice-acceleration-related biases in physiological effects. publication-title: Brain Connect. doi: 10.1089/brain.2017.0491 – volume: 154 start-page: 33 year: 2017 ident: B168 article-title: Prospective motion correction in functional MRI. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.11.014 – volume: 39 start-page: 279 year: 1998 ident: B38 article-title: Tissue-independent MR tracking of invasive devices with an internal signal source. publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910390215 – volume: 64 start-page: 240 year: 2013 ident: B125 article-title: An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.08.052 – volume: 112 start-page: 278 ident: B117 article-title: Evaluation of ICA-AROMA and alternative strategies for motion artifact removal in resting state fMRI. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.02.063 – volume: 38 start-page: 4634 year: 2011 ident: B162 article-title: Spin-history artifact during functional MRI: potential for adaptive correction. publication-title: Med. Phys. doi: 10.1118/1.3583814 – volume: 171 start-page: 234 year: 2018 ident: B59 article-title: Behavioral interventions for reducing head motion during MRI scans in children. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.01.023 – volume: 10 year: 2016 ident: B164 article-title: Evaluating the influence of spatial resampling for motion correction in resting-state functional MRI. publication-title: Front. Neurosci. doi: 10.3389/fnins.2016.00591 – volume: 17 start-page: 825 year: 2002 ident: B71 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images. publication-title: Neuroimage doi: 10.1016/S1053-8119(02)91132-91138 – volume: 289 start-page: 509 year: 2018 ident: B75 article-title: Robust motion correction strategy for structural MRI in unsedated children demonstrated with three-dimensional radial MPnRAGE. publication-title: Radiology doi: 10.1148/radiol.2018180180 – volume: 68 start-page: 154 year: 2013 ident: B94 article-title: Prospective active marker motion correction improves statistical power in BOLD fMRI. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.11.052 – volume: 81 start-page: 1147 year: 2010 ident: B12 article-title: Role of resting state functional connectivity MRI in presurgical investigation of mesial temporal lobe epilepsy. publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.2009.191460 – volume: 44 start-page: 893 year: 2009 ident: B96 article-title: The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.09.036 – volume: 13 start-page: 903 year: 2001 ident: B2 article-title: Modeling geometric deformations in EPI time series. publication-title: Neuroimage doi: 10.1006/nimg.2001.0746 – volume: 78 start-page: 2127 year: 2017 ident: B68 article-title: Prospective motion correction in 2D multishot MRI using EPI navigators and multislice-to-volume image registration. publication-title: Magn. Reson. Med. doi: 10.1002/mrm.26951 – volume: 41 start-page: 835 year: 2008 ident: B4 article-title: Comparing surface-based and volume-based analyses of functional neuroimaging data in patients with schizophrenia. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.02.052 – volume: 9 start-page: 407 year: 1999 ident: B29 article-title: Localization of cardiac-induced signal change in fMRI. publication-title: Neuroimage doi: 10.1006/nimg.1998.0424 – volume: 19 start-page: 288 year: 2006 ident: B116 article-title: Encoding and reconstruction in parallel MRI. publication-title: NMR Biomed. doi: 10.1002/nbm.1042 – volume: 26 start-page: 703 year: 2008 ident: B163 article-title: Concurrent correction of geometric distortion and motion using the map-slice-to-volume method in echo-planar imaging. publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2007.11.001 – volume: 7 ident: B25 article-title: Optimizing preprocessing and analysis pipelines for single-subject fMRI: 2. Interactions with ICA, PCA, task contrast and inter-subject heterogeneity. publication-title: PLoS One doi: 10.1371/journal.pone.0031147 – volume: 35 start-page: 346 year: 1996 ident: B50 article-title: Movement-related effects in fMRI time-series. publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910350312 – volume: 154 start-page: 174 year: 2017 ident: B26 article-title: Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.03.020 – volume: 2 start-page: 165 year: 1995 ident: B49 article-title: Spatial registration and normalization of images. publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.460030303 – volume: 5 start-page: 582 year: 2015 ident: B110 article-title: Using edge voxel information to improve motion regression for rs-fMRI connectivity studies. publication-title: Brain Connect. doi: 10.1089/brain.2014.0321 – volume: 107 start-page: 10238 year: 2010 ident: B128 article-title: Neural basis of global resting-state fMRI activity. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0913110107 – volume: 173 start-page: 127 year: 2018 ident: B160 article-title: Impact of global signal regression on characterizing dynamic functional connectivity and brain states. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.02.036 – volume: 25 start-page: 894 year: 2007 ident: B84 article-title: Modelling large motion events in fMRI studies of patients with epilepsy. publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2007.03.009 – start-page: 4 year: 2018 ident: B51 article-title: Markerless real-time motion correction for T1- and T2-weighted neuroanatomical MRI publication-title: Proceedings of the Joint Annual Meeting ISMRM-ESMRMB – volume: 46 start-page: 3331 year: 2001 ident: B120 article-title: Respiratory effects in human functional magnetic resonance imaging due to bulk susceptibility changes. publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/46/12/318 – volume: 8 start-page: 80 year: 1999 ident: B72 article-title: Sources of distortion in functional MRI data. publication-title: Hum. Brain Mapp. doi: 10.1002/(sici)1097-0193(1999)8:2/3<80::aid-hbm2>3.0.co;2-c – volume: 63 start-page: 1364 year: 2012 ident: B93 article-title: Network-specific effects of age and in-scanner subject motion: a resting-state fMRI study of 238 healthy adults. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.08.004 – volume: 22 start-page: 139 year: 1998 ident: B157 article-title: Automated image registration: I. General methods and intrasubject, intramodality validation. publication-title: J. Comput. Assist. Tomogr. doi: 10.1097/00004728-199801000-00027 – volume: 82 start-page: 208 year: 2013 ident: B66 article-title: The nuisance of nuisance regression: spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.116 – volume: 98 year: 2019 ident: B85 article-title: Does pre-scanning training improve the image quality of children receiving magnetic resonance imaging?: a meta-analysis of current studies. publication-title: Medicine doi: 10.1097/MD.0000000000014323 – volume: 44 start-page: 181 year: 2014 ident: B6 article-title: High success rates of sedation-free brain MRI scanning in young children using simple subject preparation protocols with and without a commercial mock scanner-the diabetes research in children network (DirecNet) experience. publication-title: Pediatr. Radiol. doi: 10.1007/s00247-013-2798-2797 – volume: 7 year: 2012 ident: B91 article-title: Measurement and correction of microscopic head motion during magnetic resonance imaging of the brain. publication-title: PLoS One doi: 10.1371/journal.pone.0048088 – volume: 27 start-page: 779 year: 2006 ident: B74 article-title: Motion correction and the use of motion covariates in multiple-subject fMRI analysis. publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20219 – volume: 62 start-page: 943 year: 2009 ident: B105 article-title: Prospective real-time correction for arbitrary head motion using active markers. publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22082 – volume: 10 year: 2018 ident: B86 article-title: Resting-State functional connectivity predicts cognitive impairment related to Alzheimer’s Disease. publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2018.00094 – volume: 35 start-page: 1 year: 2014 ident: B159 article-title: Functional magnetic resonance imaging movers and shakers: does subject-movement cause sampling bias? publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22150 – volume: 37 start-page: 90 year: 2007 ident: B9 article-title: A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.04.042 – volume: 79 start-page: 2046 year: 2018 ident: B5 article-title: Prospective motion correction with NMR markers using only native sequence elements. publication-title: Magn. Reson. Med. doi: 10.1002/mrm.26877 – volume: 96 start-page: 22 year: 2014 ident: B98 article-title: Reduction of motion-related artifacts in resting state fMRI using aCompCor. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.03.028 – volume: 173 start-page: 255 year: 1989 ident: B34 article-title: Adaptive technique for high-definition MR imaging of moving structures. publication-title: Radiology doi: 10.1148/radiology.173.1.2781017 – volume: 37 start-page: 1286 year: 2007 ident: B7 article-title: Isolating physiologic noise sources with independently determined spatial measures. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.07.004 – volume: 83 start-page: 550 year: 2013 ident: B14 article-title: The effect of scan length on the reliability of resting-state fMRI connectivity estimates. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.099 – volume: 154 start-page: 169 year: 2017 ident: B97 article-title: Towards a consensus regarding global signal regression for resting state functional connectivity MRI. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.11.052 – year: 2017 ident: B151 article-title: The impact of diverse preprocessing pipelines on brain functional connectivity publication-title: Proceedings of the 25th European Signal Processing Conference, EUSIPCO doi: 10.23919/EUSIPCO.2017.8081690 – volume: 80 start-page: 144 ident: B134 article-title: Resting-state fMRI in the human connectome project. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.039 – volume: 31 start-page: 436 year: 2007 ident: B92 article-title: Comparison of fMRI statistical software packages and strategies for analysis of images containing random and stimulus-correlated motion. publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2007.04.002 – volume: 105 start-page: 536 year: 2015 ident: B115 article-title: Recent progress and outstanding issues in motion correction in resting state fMRI. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.10.044 – volume: 37 start-page: 6394 year: 2017 ident: B111 article-title: Evidence for functional networks within the human brain’s white matter. publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3872-16.2017 – volume: 105 start-page: 4028 year: 2008 ident: B43 article-title: The maturing architecture of the brain’s default network. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0800376105 – volume: 35 start-page: 434 year: 2017 ident: B107 article-title: Optimal slice timing correction and its interaction with fMRI parameters and artifacts. publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.08.006 – volume: 69 start-page: 734 year: 2013 ident: B123 article-title: Real-time correction by optical tracking with integrated geometric distortion correction for reducing motion artifacts in functional MRI. publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24309 – start-page: 444 year: 2002 ident: B95 article-title: Position-history and spin-history artifacts in fMRI time series publication-title: Proceedings of the SPIE Medical Imaging 2002: Physiology and Function from Multidimensional Images International Society for Optics and Photonics doi: 10.1117/12.463613 – volume: 1 start-page: 496 year: 2011 ident: B19 article-title: Global and system-specific resting-state fMRI fluctuations are uncorrelated: principal component analysis reveals anti-correlated networks. publication-title: Brain Connect. doi: 10.1089/brain.2011.0065 – volume: 5 year: 2010 ident: B46 article-title: Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging. publication-title: PLoS One doi: 10.1371/journal.pone.0015710 – volume: 50 start-page: 839 year: 2003 ident: B122 article-title: Single-shot magnetic field mapping embedded in echo-planar time-course imaging. publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10587 – volume: 64 start-page: 526 year: 2013 ident: B17 article-title: Removing motion and physiological artifacts from intrinsic BOLD fluctuations using short echo data. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.09.043 – volume: 15 start-page: 225 year: 2005 ident: B27 article-title: Why the frontal cortex in autism might be talking only to itself: local over-connectivity but long-distance disconnection. publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2005.03.001 – volume: 44 start-page: 457 year: 2000 ident: B139 article-title: Prospective acquisition correction for head motion with image-based tracking for real-time fMRI. publication-title: Magn. Reson. Med. doi: 10.1002/1522-2594(200009)44:3<457::aid-mrm17>3.3.co;2-i – volume: 34 start-page: 537 year: 1995 ident: B15 article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar mri. publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910340409 – volume: 31 start-page: 283 year: 1994 ident: B64 article-title: Artifacts due to stimulus-correlated motion in functional imaging of the brain. publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910310307 – volume: 63 start-page: 91 year: 2010 ident: B155 article-title: PROMO: real-time prospective motion correction in MRI using image-based tracking. publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22176 – volume: 11 start-page: 49 year: 2000 ident: B61 article-title: Characterization and correction of interpolation effects in the realignment of fMRI time series. publication-title: Neuroimage doi: 10.1006/nimg.1999.0515 – volume: 27 start-page: 801 year: 2014 ident: B65 article-title: head motion parameters in fMRI differ between patients with mild cognitive impairment and Alzheimer Disease versus elderly control subjects. publication-title: Brain Topogr. doi: 10.1007/s10548-014-0358-356 – start-page: 3 year: 2018 ident: B67 article-title: Prospective Motion Correction in Multiband fMRI Using Multislice-to-Volume Image Registration publication-title: Proceedings of the 2018 Joint Annual Meeting of the International Society for Magnetic Resonance in Medicine and the European Society of Magnetic Resonance in Medicine and Biology doi: 10.1002/mrm.26951.5 – volume: 76 start-page: 183 year: 2013 ident: B161 article-title: A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.03.004 – volume: 59 start-page: 431 year: 2012 ident: B147 article-title: The influence of head motion on intrinsic functional connectivity MRI. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.07.044 – volume: 28 start-page: 523 year: 2015 ident: B133 article-title: Optical tracking with two markers for robust prospective motion correction for brain imaging. publication-title: Magn. Reson. Mater. Phys. Biol. Med. doi: 10.1007/s10334-015-0493-4 – volume: 78 start-page: 527 year: 2017 ident: B56 article-title: Motion correction for functional MRI with three-dimensional hybrid radial-Cartesian EPI. publication-title: Magn. Reson. Med. doi: 10.1002/mrm.26390 – volume: 66 start-page: 73 year: 2011 ident: B104 article-title: Echo-planar imaging with prospective slice-by-slice motion correction using active markers. publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22780 – volume: 122 start-page: 222 year: 2015 ident: B149 article-title: Inscapes: a movie paradigm to improve compliance in functional magnetic resonance imaging. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.07.069 – volume: 124 start-page: 24 year: 2016 ident: B156 article-title: Differences in the resting-state fMRI global signal amplitude between the eyes open and eyes closed states are related to changes in EEG vigilance. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.08.053 – volume: 17 start-page: 666 ident: B135 article-title: Functional connectomics from resting-state fMRI. publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2013.09.016 – volume: 90 start-page: 449 year: 2014 ident: B124 article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.11.046 – volume: 7 start-page: 365 year: 1997 ident: B158 article-title: Inadequacy of motion correction algorithms in functional MRI: role of susceptibility-induced artifacts. publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.1880070219 – start-page: 1860 year: 2016 ident: B10 article-title: Real Time MRI motion correction with markerless tracking publication-title: Proceedings of the International Society for Magnetic Resonance in Medicine – volume: 68 start-page: 1247 year: 2012 ident: B150 article-title: Reference-free unwarping of EPI data using dynamic off-resonance correction with multiecho acquisition (DOCMA). publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24119 – volume: 25 start-page: 35 year: 2007 ident: B112 article-title: CORSICA: correction of structured noise in fMRI by automatic identification of ICA components. publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2006.09.042 – volume: 47 start-page: 32 year: 2002 ident: B154 article-title: Spherical navigator echoes for full 3D rigid body motion measurement in MRI. publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10012 – volume: 155 start-page: 75 year: 2007 ident: B37 article-title: Assessment and prevention of head motion during imaging of patients with attention deficit hyperactivity disorder. publication-title: Psychiatry Res. doi: 10.1016/j.pscychresns.2006.12.009 – volume: 84 start-page: 320 year: 2014 ident: B114 article-title: Methods to detect, characterize, and remove motion artifact in resting state fMRI. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.08.048 – volume: 39 start-page: 101 year: 2017 ident: B47 article-title: Slice-to-volume medical image registration: a survey. publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.04.010 – volume: 35 start-page: 1538 year: 1994 ident: B58 article-title: Head movement in normal subjects during simulated PET brain imaging with and without head restraint. publication-title: J. Nucl. Med. – volume: 11 start-page: 1005 year: 2004 ident: B35 article-title: The effects of geometric distortion correction on motion realignment in fMRI. publication-title: Acad. Radiol. doi: 10.1016/j.acra.2004.04.022 – volume: 33 start-page: 609 ident: B24 article-title: Optimizing preprocessing and analysis pipelines for single-subject fMRI. I. Standard temporal motion and physiological noise correction methods. publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.21238 – volume: 38 start-page: 1610 year: 2019 ident: B148 article-title: A wireless radio frequency triggered acquisition device (WRAD) for self-synchronised measurements of the rate of change of the MRI gradient vector field for motion tracking. publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2019.2891774 – volume: 117 start-page: 13 year: 2013 ident: B129 article-title: Improving MRT image quality in patients with movement disorders. publication-title: Acta Neurochir. Suppl. doi: 10.1007/978-3-7091-1482-7_3 – volume: 17 start-page: 1521 year: 2002 ident: B141 article-title: Noise reduction in BOLD-Based fMRI using component analysis. publication-title: Neuroimage doi: 10.1006/nimg.2002.1200 – volume: 6 year: 2018 ident: B140 article-title: Factors associated with successful MRI scanning in unsedated young children. publication-title: Front. Pediatr. doi: 10.3389/fped.2018.00146 – volume: 112 start-page: 267 ident: B118 article-title: ICA-AROMA: a robust ICA-based strategy for removing motion artifacts from fMRI data. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.02.064 – volume: 28 start-page: 529 year: 2005 ident: B99 article-title: Comparison of fMRI motion correction software tools. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.05.058 – volume: 92 start-page: 8 ident: B167 article-title: Simultaneous Multi-Slice fMRI using spiral trajectories. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.01.056 – volume: 81 start-page: 719 year: 2018 ident: B39 article-title: Comparison of prospective head motion correction with NMR field probes and an optical tracking system. publication-title: Magn. Reson. Med doi: 10.1002/mrm.27343 – volume: 16 start-page: 217 year: 2002 ident: B70 article-title: Image distortion correction in fMRI: a quantitative evaluation. publication-title: Neuroimage doi: 10.1006/nimg.2001.1054 – volume: 101 start-page: 21 year: 2014 ident: B8 article-title: SimPACE: generating simulated motion corrupted BOLD data with synthetic-navigated acquisition for the development and evaluation of SLOMOCO: a new, highly effective slicewise motion correction. publication-title: Neuroimage doi: 10.1016/J.NEUROIMAGE.2014.06.038 – volume: 14 start-page: 709 year: 2001 ident: B48 article-title: Motion correction algorithms may create spurious brain activations in the absence of subject motion. publication-title: Neuroimage doi: 10.1006/nimg.2001.0869 – volume: 95 start-page: 287 year: 2014 ident: B109 article-title: A wavelet method for modeling and despiking motion artifacts from resting-state fMRI time series. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.03.012 – volume: 39 start-page: 361 year: 1998 ident: B54 article-title: Self-navigated spiral fMRI: interleaved versus single-shot. publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910390305 – volume: 110 start-page: 16187 year: 2013 ident: B80 article-title: Integrated strategy for improving functional connectivity mapping using multiecho fMRI. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1301725110 – start-page: 269 year: 1999 ident: B42 article-title: Real time head motion correction for functional MRI publication-title: Proceedings of the International Society for Magnetic Resonance in Medicine – volume: 29 start-page: 162 year: 1996 ident: B28 article-title: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. publication-title: Comput. Biomed. Res. doi: 10.1006/cbmr.1996.0014 – volume: 30 start-page: 1481 year: 2009 ident: B165 article-title: Quantification of head motion in children during various fMRI language tasks. publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20616 – volume: 22 start-page: 1427 year: 2003 ident: B106 article-title: Simultaneous registration and activation detection for fMRI. publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2003.819294 – volume: 41 start-page: 964 year: 1999 ident: B76 article-title: Motion correction in fMRI via registration of individual slices into an anatomical volume. publication-title: Magn. Reson. Med. doi: 10.1002/(sici)1522-2594(199905)41:5<964::aid-mrm16>3.3.co;2-4 – volume: 52 start-page: 1428 year: 2010 ident: B83 article-title: Rapid 3D radial multi-echo functional magnetic resonance imaging. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.05.004 – volume: 47 start-page: 1408 year: 2009 ident: B153 article-title: Correlations and anticorrelations in resting-state functional connectivity MRI: a quantitative comparison of preprocessing strategies. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.05.005 – year: 2017 ident: B40 article-title: Prospective Head Motion Correction Using Multiple Tracking Modalities publication-title: Proceedings of the ESMRMB Annual Scientific Meeting – volume: 68 start-page: 1828 year: 2012 ident: B21 article-title: A method to determine the necessity for global signal regression in resting-state fMRI studies. publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24201 – volume: 68 start-page: 389 year: 2012 ident: B142 article-title: Volumetric navigators for prospective motion correction and selective reacquisition in neuroanatomical MRI. publication-title: Magn. Reson. Med. doi: 10.1002/mrm.23228 – start-page: 3196 year: 2006 ident: B79 article-title: Prospective Intra-Image Compensation for Non-Periodic Rigid Body Motion Using Active Markers publication-title: Proceedings of the International Society for Magnetic Resonance in Medicine – volume: 6 start-page: 156 year: 1997 ident: B100 article-title: Anatomic localization and quantitative analysis of gradient refocused Echo-Planar fMRI susceptibility artifacts. publication-title: Neuroimage doi: 10.1006/nimg.1997.0289 – start-page: 746 year: 2006 ident: B152 article-title: Real-time Motion Correction in 3D EPI using Cloverleaf Navigators publication-title: Proceedings 14th Scientific Meeting, International Society for Magnetic Resonance in Medicine |
SSID | ssj0062842 |
Score | 2.44684 |
SecondaryResourceType | review_article |
Snippet | Resting state functional magnetic resonance imaging (rs-fMRI) has become an indispensable tool in neuroscience research. Despite this, rs-fMRI signals are... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 825 |
SubjectTerms | Algorithms Brain research Functional magnetic resonance imaging image processing Medical research motion artifacts motion compensation Nervous system Neural networks Neuroscience NMR noise Nuclear magnetic resonance Quality control resting state fMRI |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB7EkxfxbX0RQQQPZdsmaRtvKj5hPYiCt5K0iQqaFV0P_ntn0u6yK6IXDz00TdP0mzy-adJvAPZqqY1KDDbeXOhYWCvjUucitto4ZMBNXgYB0_51fnEnru7l_USoL9oT1soDt8D1SkfqgonLElGLrCmUtEmpnVYcC8bJjUZfnPNGzlQ7Buc46GbtoiS6YKrn_JMnbe6UxClLCos9MQkFrf6fCOb3fZITE8_ZAsx3jJEdtTVdhBnrl2D5yKO3_PLJ9lnYwxk-ji9DfEOiGf6BBQ7JXP_m8pCdDyjltg3Iw5DwsX4I3fO-Andnp7cnF3EXECGuhUqGcaZLS4dG5KWTtmhU1qBHhLBI7HlJXRfIz0yueNoYBAddkVQap5uyMTnPJF-FWT_wdh2YSZVJMoPesSmEy6TRvKyVdJw3eOpMBL0RQlXdqYVT0IrnCr0GwrQKmFaEaRUwjeBgfMdrq5TxS95jAn2cjzSuQwJavuosX_1l-Qi2Riaruo6Hz0A6xgVHvz6C3fFl7DK0DqK9HXxQHmQpgqTTIlhrLTyuCU-RUSLHjaCYsv1UVaev-KfHIMtNPzxh0Rv_8W6bMEdo0cfrlG_B7PDtw24j-xmandDQvwDpiQFl priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB1Be-GCgPIRKMhICIlDtElsJ3YvqEUtBWkrtGql3iI7sUslcEq7PfDvO-N4o25V9ZBDYidxZjzjN7bzBuBTJ43VhcXOWwuTC-dkrkwtcmesRwTc1yoSmM6P6sMT8fNUnqYJt6u0rXLlE6Oj7oeO5shnFY6zXHAM2L5e_MspaxStrqYUGo9hE12wwuBrc2__6Ndi5YtrdL5xvbOmf4MQnI8LlRiW6ZkP54H4uksirFSUKvvWwBT5--8DnXf3Tt4ajA6ewdOEItnuqPbn8MiFF7C1GzCC_vuffWZxX2ecMN-CfEFEGuGMRVzJ_HzxY4d9H-jK8ZikhyEIZPOYzufqJZwc7B9_O8xTkoS8E7pY5pVRjg6D2pBeuqbXVY9RUtU3Eq2x6LoGMZutNS9761CKaHTSetOr3ta8kvwVbIQhuDfAbKltUVmMmG0jfCWt4arT0nPe46m3GcxWEmq7xCBOiSz-tBhJkEzbKNOWZNpGmWbwZbrjYmTPeKDuHgl9qke81_HCcHnWJjNqlSeuycJXhejoE7V0hTLeaI7dDKFOBtsrlbXJGPEdU9fJ4ONUjGZEayMmuOGa6iByEUSnlsHrUcNTS3iJKBNxbwbNmu7XmrpeEs5_R6pu-gkKH_324Wa9gyckB5qqLvk2bCwvr917xDpL-yF16BvtL_zj priority: 102 providerName: ProQuest |
Title | Resting State fMRI: Going Through the Motions |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31456656 https://www.proquest.com/docview/2273343888 https://www.proquest.com/docview/2281846121 https://pubmed.ncbi.nlm.nih.gov/PMC6700228 https://doaj.org/article/8f03130f204c42d795e08afa934ee222 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9RAFD5o--KLqPUSrcsIIvgQm8wlF0GklV4UtsjShX0bZpKZtlBndbsF--89Z5KNriziQwJJJrcz52S-bybzHYDXjTK2ziw6byFNKp1TaWUKmTpjPSLgtqiigOn4tDiZyi8zNfs9Pbo34PVGakf5pKaLq3c_f9x-xID_QIwT29s9Hy4DKW_nJD2JjOcubGO7VFKYjuUwplDghziOfRY0TwiBejdoufEKa41U1PLfBED__o_yj4bp6AHc7xEl2-9c4CHcceER7OwHZNPfbtkbFv_xjJ3nO5BOSFQjnLOIMZkfTz6_Z8dz2nPWJexhCAjZOKb2uX4M06PDs08naZ8wIW1knS1TbipHi8GaUV65sq15i4yJt6XCyMyapkT8Zota5K11nCNVyZX1pq1aWwiuxBPYCvPgngGzeW0zbpE921J6rqwRVVMrL0SLm94msLeykG56NXFKanGlkVWQTXW0qSab6mjTBN4OZ3zvlDT-UfaAjD6UIw3suGO-ONd9SOnKk-5k5nkmG3rFWrmsMt7UAl0OYU8Cu6sq0yu_0vjSQkiBvD-BV8NhDCkaJzHBzW-oDKIYSdJqCTztanh4EpEj4kQMnEC5Vvdrj7p-JFxeRNlumhCFl37-H_d9AffIGNR3nYtd2FoubtxLBD9LO4Ltg8PTr5NR7DzA9fEsH0U__wX3mASy |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5V6QEuCCgPQ4FFAiQOVux9-IGEUAstCW0iFKVSb2bX3i2VWru0qVD_FL-RmbUdNQj11kMOsTfxenZ29vv28Q3Am1Jpk0cGnTeROpTWqjDTiQytNg4RcJVkXsB0Mk1GB_LboTpcgz_9WRjaVtnHRB-oq6akOfIhx3FWSIGE7dPZr5CyRtHqap9Co3WLPXv1GynbxcfxF2zft5zv7sw_j8Iuq0BYyjxahFxnlj4aq6-csmmV8wppBa9She4blWWKIMckuYgrY_Gx6KXKOF1llUkEpywRGPLXpUAqM4D17Z3p91kf-xMM9n59NaGzSEgG2oVRpIH50NXHNemDxySQmVFq7msDoc8X8D-Q--9ezWuD3-59uNehVrbVutkDWLP1Q9jYqpGxn16xd8zvI_UT9BsQzki4oz5iHscyN5mNP7CvDV2Zt0mBGIJONvHpgy4ewcGtmO8xDOqmtk-BmTg3ETfI0E0qHVdGi6zMlROiwq_OBDDsLVSUnWI5Jc44KZC5kE0Lb9OCbFp4mwbwfvmLs1at44ay22T0ZTnS2fYXmvOjouu2ReZI2zJyPJIlvWKubJRpp3OBbo3QKoDNvsmKrvPjM5auGsDr5W3strQWo2vbXFIZREqS5NsCeNK28LImIkZUizg7gHSl7VequnqnPv7ppcHp0BX-9bObq_UK7ozmk_1ifzzdew53ySY0TR6LTRgszi_tC8RZC_Oyc24GP267P_0FaY86BQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB6hRap6qVroIy0FV2or9RBtYsd5VKoQFLZs6a7QCiRuwU5sitQmFBZV_DV-HTPOQ2xVceOwh028G2c8Hn-fH98AvC-k0lmg0XnjSPmRMdJPVRz5RmmLCLiMUydgOpnGe0fR92N5vAQ33VkY2lbZxUQXqMu6oDnyIcdxVkSCCJttt0Uc7Iw2z__4lEGKVlq7dBqNi-yb679I3y6_jHewrT9wPto9_LrntxkG_CLKgrnPVWroo_BVpJUmKTNeIsXgZSLRlYOiSBDw6DgTYakNVgE9VmqryrTUseCUMQLD_3KCrCgYwPL27vRg1o0DMQZ-t9Ya07kkJAbNIilSwmxoq7OKtMJDEstMKU33nUHR5Q74H-D9d9_mnYFw9BSetAiWbTUu9wyWTLUCq1sVsvff1-wjc3tK3WT9KvgzEvGoTpnDtMxOZuPP7FtNVw6bBEEMASibuFRCl8_h6EHM9wIGVV2ZV8B0mOmAa2TrOoksl1qJtMikFaLEr1Z7MOwslBetejkl0fiVI4shm-bOpjnZNHc29eBT_4vzRrnjnrLbZPS-HGluuwv1xWneduE8taRzGVgeRAW9YiZNkCqrMoEujjDLg7WuyfI2EOAzerf14F1_G7swrcuoytRXVAZRU0RSbh68bFq4r4kIEeEi5vYgWWj7haou3qnOfjqZcDqAhX_9-v5qbcAj7Ef5j_F0_w08JpPQjHko1mAwv7gybxFyzfV669sMTh66O90CAgA-Og |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resting+State+fMRI%3A+Going+Through+the+Motions&rft.jtitle=Frontiers+in+neuroscience&rft.au=Maknojia%2C+Sanam&rft.au=Churchill%2C+Nathan+W&rft.au=Schweizer%2C+Tom+A&rft.au=Graham%2C+S+J&rft.date=2019-08-13&rft.issn=1662-4548&rft.volume=13&rft.spage=825&rft_id=info:doi/10.3389%2Ffnins.2019.00825&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon |