Resting State fMRI: Going Through the Motions

Resting state functional magnetic resonance imaging (rs-fMRI) has become an indispensable tool in neuroscience research. Despite this, rs-fMRI signals are easily contaminated by artifacts arising from movement of the head during data collection. The artifacts can be problematic even for motions on t...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroscience Vol. 13; p. 825
Main Authors Maknojia, Sanam, Churchill, Nathan W., Schweizer, Tom A., Graham, S. J.
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 13.08.2019
Frontiers Media S.A
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Resting state functional magnetic resonance imaging (rs-fMRI) has become an indispensable tool in neuroscience research. Despite this, rs-fMRI signals are easily contaminated by artifacts arising from movement of the head during data collection. The artifacts can be problematic even for motions on the millimeter scale, with complex spatiotemporal properties that can lead to substantial errors in functional connectivity estimates. Effective correction methods must be employed, therefore, to distinguish true functional networks from motion-related noise. Research over the last three decades has produced numerous correction methods, many of which must be applied in combination to achieve satisfactory data quality. Subject instruction, training, and mild restraints are helpful at the outset, but usually insufficient. Improvements come from applying multiple motion correction algorithms retrospectively after rs-fMRI data are collected, although residual artifacts can still remain in cases of elevated motion, which are especially prevalent in patient populations. Although not commonly adopted at present, "real-time" correction methods are emerging that can be combined with retrospective methods and that promise better correction and increased rs-fMRI signal sensitivity. While the search for the ideal motion correction protocol continues, rs-fMRI research will benefit from good disclosure practices, such as: (1) reporting motion-related quality control metrics to provide better comparison between studies; and (2) including motion covariates in group-level analyses to limit the extent of motion-related confounds when studying group differences.
AbstractList Resting state functional magnetic resonance imaging (rs-fMRI) has become an indispensable tool in neuroscience research. Despite this, rs-fMRI signals are easily contaminated by artifacts arising from movement of the head during data collection. The artifacts can be problematic even for motions on the millimeter scale, with complex spatiotemporal properties that can lead to substantial errors in functional connectivity estimates. Effective correction methods must be employed, therefore, to distinguish true functional networks from motion-related noise. Research over the last three decades has produced numerous correction methods, many of which must be applied in combination to achieve satisfactory data quality. Subject instruction, training, and mild restraints are helpful at the outset, but usually insufficient. Improvements come from applying multiple motion correction algorithms retrospectively after rs-fMRI data are collected, although residual artifacts can still remain in cases of elevated motion, which are especially prevalent in patient populations. Although not commonly adopted at present, “real-time” correction methods are emerging that can be combined with retrospective methods and that promise better correction and increased rs-fMRI signal sensitivity. While the search for the ideal motion correction protocol continues, rs-fMRI research will benefit from good disclosure practices, such as: (1) reporting motion-related quality control metrics to provide better comparison between studies; and (2) including motion covariates in group-level analyses to limit the extent of motion-related confounds when studying group differences.
Resting state functional magnetic resonance imaging (rs-fMRI) has become an indispensable tool in neuroscience research. Despite this, rs-fMRI signals are easily contaminated by artifacts arising from movement of the head during data collection. The artifacts can be problematic even for motions on the millimetre scale, with complex spatiotemporal properties that can lead to substantial errors in functional connectivity estimates. Effective correction methods must be employed, therefore, to distinguish true functional networks from motion-related noise. Research over the last three decades has produced numerous correction methods, many of which must be applied in combination to achieve satisfactory data quality. Subject instruction, training and mild restraints are helpful at the outset, but usually insufficient. Improvements come from applying multiple motion correction algorithms retrospectively after rs-fMRI data are collected, although residual artifacts can still remain in cases of elevated motion, which are especially prevalent in patient populations. Although not commonly adopted at present, "real-time" correction methods are emerging that can be combined with retrospective methods and that promise better correction and increased rs-fMRI signal sensitivity. While the search for the ideal motion correction protocol continues, rs-fMRI research will benefit from good disclosure practices, such as: 1) reporting motion-related quality control metrics to provide better comparison between studies; and 2) including motion covariates in group-level analyses to limit the extent of motion-related confounds when studying group differences.
Resting state functional magnetic resonance imaging (rs-fMRI) has become an indispensable tool in neuroscience research. Despite this, rs-fMRI signals are easily contaminated by artifacts arising from movement of the head during data collection. The artifacts can be problematic even for motions on the millimeter scale, with complex spatiotemporal properties that can lead to substantial errors in functional connectivity estimates. Effective correction methods must be employed, therefore, to distinguish true functional networks from motion-related noise. Research over the last three decades has produced numerous correction methods, many of which must be applied in combination to achieve satisfactory data quality. Subject instruction, training, and mild restraints are helpful at the outset, but usually insufficient. Improvements come from applying multiple motion correction algorithms retrospectively after rs-fMRI data are collected, although residual artifacts can still remain in cases of elevated motion, which are especially prevalent in patient populations. Although not commonly adopted at present, "real-time" correction methods are emerging that can be combined with retrospective methods and that promise better correction and increased rs-fMRI signal sensitivity. While the search for the ideal motion correction protocol continues, rs-fMRI research will benefit from good disclosure practices, such as: (1) reporting motion-related quality control metrics to provide better comparison between studies; and (2) including motion covariates in group-level analyses to limit the extent of motion-related confounds when studying group differences.Resting state functional magnetic resonance imaging (rs-fMRI) has become an indispensable tool in neuroscience research. Despite this, rs-fMRI signals are easily contaminated by artifacts arising from movement of the head during data collection. The artifacts can be problematic even for motions on the millimeter scale, with complex spatiotemporal properties that can lead to substantial errors in functional connectivity estimates. Effective correction methods must be employed, therefore, to distinguish true functional networks from motion-related noise. Research over the last three decades has produced numerous correction methods, many of which must be applied in combination to achieve satisfactory data quality. Subject instruction, training, and mild restraints are helpful at the outset, but usually insufficient. Improvements come from applying multiple motion correction algorithms retrospectively after rs-fMRI data are collected, although residual artifacts can still remain in cases of elevated motion, which are especially prevalent in patient populations. Although not commonly adopted at present, "real-time" correction methods are emerging that can be combined with retrospective methods and that promise better correction and increased rs-fMRI signal sensitivity. While the search for the ideal motion correction protocol continues, rs-fMRI research will benefit from good disclosure practices, such as: (1) reporting motion-related quality control metrics to provide better comparison between studies; and (2) including motion covariates in group-level analyses to limit the extent of motion-related confounds when studying group differences.
Author Churchill, Nathan W.
Schweizer, Tom A.
Graham, S. J.
Maknojia, Sanam
AuthorAffiliation 1 Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre , Toronto, ON , Canada
2 Keenan Research Centre for Biomedical Science, St. Michael’s Hospital , Toronto, ON , Canada
5 Department of Medical Biophysics, Faculty of Medicine, University of Toronto , Toronto, ON , Canada
4 Institute of Biomaterials and Biomedical Engineering, Faculty of Medicine, University of Toronto , Toronto, ON , Canada
3 Division of Neurosurgery, Faculty of Medicine, University of Toronto , Toronto, ON , Canada
AuthorAffiliation_xml – name: 1 Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre , Toronto, ON , Canada
– name: 2 Keenan Research Centre for Biomedical Science, St. Michael’s Hospital , Toronto, ON , Canada
– name: 3 Division of Neurosurgery, Faculty of Medicine, University of Toronto , Toronto, ON , Canada
– name: 4 Institute of Biomaterials and Biomedical Engineering, Faculty of Medicine, University of Toronto , Toronto, ON , Canada
– name: 5 Department of Medical Biophysics, Faculty of Medicine, University of Toronto , Toronto, ON , Canada
Author_xml – sequence: 1
  givenname: Sanam
  surname: Maknojia
  fullname: Maknojia, Sanam
– sequence: 2
  givenname: Nathan W.
  surname: Churchill
  fullname: Churchill, Nathan W.
– sequence: 3
  givenname: Tom A.
  surname: Schweizer
  fullname: Schweizer, Tom A.
– sequence: 4
  givenname: S. J.
  surname: Graham
  fullname: Graham, S. J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31456656$$D View this record in MEDLINE/PubMed
BookMark eNp1kd1rFDEUxYNU7Ie--yQDvvgya74n44MgRetCS6Gt4FvIZG52s8wmNZkp9L83s1tLW_AhJNyc88vNPcfoIMQACL0neMGYaj-74ENeUEzaBcaKilfoiEhJay7Y74Mn50N0nPMGY0kVp2_QISNcSCnkEaqvII8-rKrr0YxQuYur5ZfqLM6Vm3WK02pdjWuoLuLoY8hv0WtnhgzvHvYT9OvH95vTn_X55dny9Nt5bXmLx5oaBfMy0IFwApq-pT3hnPaNEI3C1jZCik62jPQdUNoIRkTnTK_6TjIq2Ala7rl9NBt9m_zWpHsdjde7QkwrbdLo7QBaOcwIw45ibucHWgFYGWdaxqGgaWF93bNup24LvYUwJjM8gz6_CX6tV_FOywZjSlUBfHoApPhnKuPSW58tDIMJEKesi4YoLgklRfrxhXQTpxTKqIqqYYwzpWbgh6cdPbbyL5UiwHuBTTHnBO5RQrCeg9e74PUcvN4FXyzyhcX6kmgJrfzJD_83_gVADrFW
CitedBy_id crossref_primary_10_3389_fpsyt_2021_533428
crossref_primary_10_3389_fnins_2022_1017211
crossref_primary_10_1002_hbm_26289
crossref_primary_10_1038_s41598_021_81219_2
crossref_primary_10_1002_hbm_25590
crossref_primary_10_1001_jamanetworkopen_2024_13508
crossref_primary_10_1007_s10278_024_01189_5
crossref_primary_10_1016_j_jneumeth_2021_109084
crossref_primary_10_1016_j_ynirp_2022_100085
crossref_primary_10_3389_fnins_2021_655247
crossref_primary_10_1007_s12021_022_09565_8
crossref_primary_10_1055_a_1892_1894
crossref_primary_10_1016_j_bosn_2024_03_001
crossref_primary_10_1093_braincomms_fcae220
crossref_primary_10_3389_fninf_2022_843114
crossref_primary_10_1111_bdi_13336
crossref_primary_10_1176_appi_ajp_20230249
crossref_primary_10_3389_fmed_2021_687420
crossref_primary_10_3389_fneur_2022_843953
crossref_primary_10_1016_j_neuroimage_2022_119711
crossref_primary_10_1016_j_radi_2020_06_001
crossref_primary_10_1371_journal_pone_0269154
crossref_primary_10_3389_fneur_2022_967794
crossref_primary_10_1097_RCT_0000000000001743
crossref_primary_10_1093_psyrad_kkab003
crossref_primary_10_1002_jmri_28472
crossref_primary_10_1016_j_nicl_2020_102385
crossref_primary_10_1126_sciadv_abm7825
crossref_primary_10_1002_hbm_24889
crossref_primary_10_1016_j_softx_2020_100598
crossref_primary_10_1002_hbm_25771
crossref_primary_10_1016_j_neuroimage_2023_120176
crossref_primary_10_3389_fnagi_2021_746236
crossref_primary_10_3389_fnins_2023_1096232
crossref_primary_10_1177_02841851241280115
crossref_primary_10_1109_TNNLS_2023_3282961
crossref_primary_10_1152_ajprenal_00423_2023
crossref_primary_10_3390_diagnostics12051032
crossref_primary_10_1016_j_ynirp_2021_100026
crossref_primary_10_1038_s41598_024_79827_9
crossref_primary_10_3174_ajnr_A8067
crossref_primary_10_31083_j_jin2102060
crossref_primary_10_1016_j_neubiorev_2022_104780
crossref_primary_10_3389_fnins_2021_602170
crossref_primary_10_3389_fnins_2023_1092125
crossref_primary_10_3390_s24123737
crossref_primary_10_1162_netn_a_00216
crossref_primary_10_3389_fnins_2022_867243
crossref_primary_10_1016_j_neuroimage_2022_118925
crossref_primary_10_1016_j_psychres_2024_115868
crossref_primary_10_3389_fpsyt_2024_1323109
crossref_primary_10_1007_s11682_023_00769_3
crossref_primary_10_1089_brain_2020_1005
Cites_doi 10.3389/fncom.2018.00008
10.1016/j.neuroimage.2015.05.015
10.1016/j.neuroimage.2010.04.246
10.1016/j.neuroimage.2011.12.063
10.1016/J.NEURON.2007.10.038
10.1016/j.dcn.2017.01.011
10.1016/j.neuroimage.2015.03.013
10.1002/mrm.26838
10.1016/j.schres.2004.09.025
10.1016/j.neuroimage.2005.07.005
10.1016/j.neuroimage.2017.12.073
10.1016/j.neuroimage.2011.10.018
10.1007/s00431-010-1181-z
10.1016/j.neuroimage.2011.10.039
10.2174/2213385204666160425155104
10.1002/mrm.22200
10.1016/j.mri.2016.06.005
10.1371/journal.pone.0082107
10.1016/j.neuroimage.2012.06.019
10.1002/mrm.23101
10.1002/mrm.24845
10.1002/mrm.23097
10.1002/mrm.1910390210
10.1002/mrm.10145
10.1006/nimg.2001.0829
10.1006/NIMG.2000.0719
10.1016/j.neuroimage.2017.08.025
10.1002/mrm.24285
10.3389/fnhum.2013.00343
10.1016/j.neuroimage.2005.02.021
10.1002/mrm.20079
10.1016/j.neuroimage.2016.12.036
10.1016/j.mri.2007.05.007
10.1097/00004728-199609000-00003
10.1002/mrm.24943
10.1002/mrm.1910360316
10.1016/j.brainres.2012.09.029
10.1016/S1053-8119(09)71160-71167
10.1016/j.neuroimage.2006.01.039
10.1097/00004728-199109000-199109034
10.1002/mrm.20605
10.1371/journal.pbio.1000157
10.1089/brain.2014.0244
10.1038/s41592-018-0235-234
10.1016/j.neuroimage.2011.12.061
10.1006/NIMG.1996.0059
10.1016/j.neuroimage.2016.12.002
10.1002/mrm.23220
10.1016/j.neuroimage.2007.10.013
10.1002/nbm.1371
10.1016/j.jneumeth.2016.06.005
10.1089/brain.2017.0491
10.1016/j.neuroimage.2016.11.014
10.1002/mrm.1910390215
10.1016/j.neuroimage.2012.08.052
10.1016/j.neuroimage.2015.02.063
10.1118/1.3583814
10.1016/j.neuroimage.2018.01.023
10.3389/fnins.2016.00591
10.1016/S1053-8119(02)91132-91138
10.1148/radiol.2018180180
10.1016/j.neuroimage.2012.11.052
10.1136/jnnp.2009.191460
10.1016/j.neuroimage.2008.09.036
10.1006/nimg.2001.0746
10.1002/mrm.26951
10.1016/j.neuroimage.2008.02.052
10.1006/nimg.1998.0424
10.1002/nbm.1042
10.1016/j.mri.2007.11.001
10.1371/journal.pone.0031147
10.1002/mrm.1910350312
10.1016/j.neuroimage.2017.03.020
10.1002/hbm.460030303
10.1089/brain.2014.0321
10.1073/pnas.0913110107
10.1016/j.neuroimage.2018.02.036
10.1016/j.mri.2007.03.009
10.1088/0031-9155/46/12/318
10.1002/(sici)1097-0193(1999)8:2/3<80::aid-hbm2>3.0.co;2-c
10.1016/j.neuroimage.2012.08.004
10.1097/00004728-199801000-00027
10.1016/j.neuroimage.2013.05.116
10.1097/MD.0000000000014323
10.1007/s00247-013-2798-2797
10.1371/journal.pone.0048088
10.1002/hbm.20219
10.1002/mrm.22082
10.3389/fnagi.2018.00094
10.1002/hbm.22150
10.1016/j.neuroimage.2007.04.042
10.1002/mrm.26877
10.1016/j.neuroimage.2014.03.028
10.1148/radiology.173.1.2781017
10.1016/j.neuroimage.2007.07.004
10.1016/j.neuroimage.2013.05.099
10.1016/j.neuroimage.2016.11.052
10.23919/EUSIPCO.2017.8081690
10.1016/j.neuroimage.2013.05.039
10.1016/j.compmedimag.2007.04.002
10.1016/j.neuroimage.2014.10.044
10.1523/JNEUROSCI.3872-16.2017
10.1073/pnas.0800376105
10.1016/j.media.2016.08.006
10.1002/mrm.24309
10.1117/12.463613
10.1089/brain.2011.0065
10.1371/journal.pone.0015710
10.1002/mrm.10587
10.1016/j.neuroimage.2012.09.043
10.1016/j.conb.2005.03.001
10.1002/1522-2594(200009)44:3<457::aid-mrm17>3.3.co;2-i
10.1002/mrm.1910340409
10.1002/mrm.1910310307
10.1002/mrm.22176
10.1006/nimg.1999.0515
10.1007/s10548-014-0358-356
10.1002/mrm.26951.5
10.1016/j.neuroimage.2013.03.004
10.1016/j.neuroimage.2011.07.044
10.1007/s10334-015-0493-4
10.1002/mrm.26390
10.1002/mrm.22780
10.1016/j.neuroimage.2015.07.069
10.1016/j.neuroimage.2015.08.053
10.1016/j.tics.2013.09.016
10.1016/j.neuroimage.2013.11.046
10.1002/jmri.1880070219
10.1002/mrm.24119
10.1016/j.mri.2006.09.042
10.1002/mrm.10012
10.1016/j.pscychresns.2006.12.009
10.1016/j.neuroimage.2013.08.048
10.1016/j.media.2017.04.010
10.1016/j.acra.2004.04.022
10.1002/hbm.21238
10.1109/TMI.2019.2891774
10.1007/978-3-7091-1482-7_3
10.1006/nimg.2002.1200
10.3389/fped.2018.00146
10.1016/j.neuroimage.2015.02.064
10.1016/j.neuroimage.2005.05.058
10.1016/j.neuroimage.2014.01.056
10.1002/mrm.27343
10.1006/nimg.2001.1054
10.1016/J.NEUROIMAGE.2014.06.038
10.1006/nimg.2001.0869
10.1016/j.neuroimage.2014.03.012
10.1002/mrm.1910390305
10.1073/pnas.1301725110
10.1006/cbmr.1996.0014
10.1002/hbm.20616
10.1109/TMI.2003.819294
10.1002/(sici)1522-2594(199905)41:5<964::aid-mrm16>3.3.co;2-4
10.1016/j.neuroimage.2010.05.004
10.1016/j.neuroimage.2009.05.005
10.1002/mrm.24201
10.1002/mrm.23228
10.1006/nimg.1997.0289
ContentType Journal Article
Copyright 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2019 Maknojia, Churchill, Schweizer and Graham. 2019 Maknojia, Churchill, Schweizer and Graham
Copyright_xml – notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2019 Maknojia, Churchill, Schweizer and Graham. 2019 Maknojia, Churchill, Schweizer and Graham
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fnins.2019.00825
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-453X
ExternalDocumentID oai_doaj_org_article_8f03130f204c42d795e08afa934ee222
PMC6700228
31456656
10_3389_fnins_2019_00825
Genre Journal Article
Review
GeographicLocations Canada
GeographicLocations_xml – name: Canada
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ACXDI
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EBS
EJD
EMOBN
F5P
FRP
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
W2D
C1A
NPM
3V.
7XB
8FK
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c490t-2a8e2a8eaebe5f5e7d92d1442d755780cc7565b6931dbe2275315bfad8db63253
IEDL.DBID M48
ISSN 1662-453X
1662-4548
IngestDate Wed Aug 27 01:27:51 EDT 2025
Thu Aug 21 13:51:55 EDT 2025
Fri Jul 11 09:57:53 EDT 2025
Fri Jul 25 11:52:46 EDT 2025
Thu Apr 03 06:54:40 EDT 2025
Tue Jul 01 01:01:37 EDT 2025
Thu Apr 24 23:03:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords image processing
noise
motion artifacts
resting state fMRI
motion compensation
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-2a8e2a8eaebe5f5e7d92d1442d755780cc7565b6931dbe2275315bfad8db63253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
Edited by: Shella Keilholz, Emory University, United States
This article was submitted to Brain Imaging Methods, a section of the journal Frontiers in Neuroscience
Reviewed by: Veena A. Nair, University of Wisconsin-Madison, United States; Jodie Reanna Gawryluk, University of Victoria, Canada
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnins.2019.00825
PMID 31456656
PQID 2273343888
PQPubID 4424402
ParticipantIDs doaj_primary_oai_doaj_org_article_8f03130f204c42d795e08afa934ee222
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6700228
proquest_miscellaneous_2281846121
proquest_journals_2273343888
pubmed_primary_31456656
crossref_primary_10_3389_fnins_2019_00825
crossref_citationtrail_10_3389_fnins_2019_00825
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-13
PublicationDateYYYYMMDD 2019-08-13
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-13
  day: 13
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neuroscience
PublicationTitleAlternate Front Neurosci
PublicationYear 2019
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Johnstone (B74) 2006; 27
Eschelbach (B40) 2017
Carbonell (B19) 2011; 1
Ferrante (B47) 2017; 39
Tohka (B144) 2008; 39
Haller (B65) 2014; 27
Todd (B143) 2015; 113
Lund (B88) 2006; 29
Morgan (B92) 2007; 31
Jezzard (B72) 1999; 8
Maclaren (B90) 2018; 79
Weissenbacher (B153) 2009; 47
Pruessmann (B116) 2006; 19
Seto (B130) 2001; 14
Churchill (B24); 33
Patel (B109) 2014; 95
Satterthwaite (B126) 2012; 60
Qin (B119) 2012; 1484
Lin (B86) 2018; 10
Muschelli (B98) 2014; 96
Engelhardt (B36) 2017; 25
Parkes (B108) 2018; 171
Haeberlin (B62) 2014
Eviatar (B42) 1999
Roopchansingh (B122) 2003; 50
Ooi (B104) 2011; 66
Faraji-Dana (B44); 34
Birn (B14) 2013; 83
Graham (B57) 2016; 4
Thomas (B141) 2002; 17
Beall (B7) 2007; 37
Oakes (B99) 2005; 28
Patriat (B110) 2015; 5
Wylie (B159) 2014; 35
Ojemann (B100) 1997; 6
Parker (B107) 2017; 35
Chen (B22) 2015
Singh (B133) 2015; 28
Yuan (B165) 2009; 30
Kundu (B80) 2013; 110
Buur (B18) 2009; 22
Churchill (B25); 7
Righini (B121) 1996; 20
Lin (B87) 2010; 63
Thesen (B139) 2000; 44
Krämer (B78) 2012; 68
Supekar (B137) 2009; 7
Kim (B76) 1999; 41
Lee (B81) 1998; 39
van Dijk (B147) 2012; 59
Zaitsev (B168) 2017; 154
Rotenberg (B123) 2013; 69
Freire (B48) 2001; 14
Ooi (B103); 69
Visser (B150) 2012; 68
Yan (B161) 2013; 76
Wastiaux (B152) 2006
Zaitsev (B169) 2006; 31
Power (B115) 2015; 105
Beall (B8) 2014; 101
Schültke (B129) 2013; 117
Schölvinck (B128) 2010; 107
Ooi (B102); 70
Tisdall (B142) 2012; 68
Murphy (B96) 2009; 44
Andrews-Hanna (B3) 2007; 56
Woods (B157) 1998; 22
Anticevic (B4) 2008; 41
Hallquist (B66) 2013; 82
De Bie (B30) 2010; 169
Smith (B135); 17
Shirer (B132) 2015; 117
Ding (B32) 2013; 8
Bright (B17) 2013; 64
Bettus (B12) 2010; 81
Muresan (B95) 2002
Elliott (B35) 2004; 11
Pruim (B118); 112
Chu (B23) 2018
Wong (B156) 2016; 124
Epstein (B37) 2007; 155
Vytvarová (B151) 2017
Welch (B154) 2002; 47
Friston (B49) 1995; 2
Tucholka (B145) 2012; 63
Frost (B51) 2018
Li (B85) 2019; 98
Peer (B111) 2017; 37
Greene (B59) 2018; 171
Hajnal (B64) 1994; 31
Dosenbach (B33) 2017; 161
Van de Moortele (B146) 2002; 47
Dagli (B29) 1999; 9
Ooi (B105) 2009; 62
Hutton (B70) 2002; 16
Feinberg (B46) 2010; 5
Green (B58) 1994; 35
Satterthwaite (B125) 2013; 64
Xu (B160) 2018; 173
Kim (B77) 2008; 26
Erhart (B38) 1998; 39
Esteban (B41) 2019; 16
Huijbers (B69) 2017; 147
Perlbarg (B112) 2007; 25
Pruim (B117); 112
Salimi-Khorshidi (B124) 2014; 90
Chen (B21) 2012; 68
Zahneisen (B167); 92
Behzadi (B9) 2007; 37
Bettinardi (B11) 1991; 15
Aranovitch (B5) 2018; 79
van Niekerk (B148) 2019; 38
Graedel (B56) 2017; 78
Sutton (B138) 2004; 51
Wu (B158) 1997; 7
Yancey (B162) 2011; 38
Friston (B50) 1996; 35
Ciric (B26) 2017; 154
Gargouri (B52) 2018; 12
Zeffiro (B170) 1996; 4
Aksoy (B1) 2012; 67
Boksman (B16) 2005; 75
Barnea-Goraly (B6) 2014; 44
Setsompop (B131) 2012; 67
Thieba (B140) 2018; 6
Murphy (B97) 2017; 154
Orchard (B106) 2003; 22
Mowinckel (B93) 2012; 63
Kecskemeti (B75) 2018; 289
Yuan (B164) 2016; 10
Ehman (B34) 1989; 173
Lee (B82) 1996; 36
Griffanti (B60) 2017; 154
Yeo (B163) 2008; 26
Zahneisen (B166); 72
Grootoonk (B61) 2000; 11
Lemieux (B84) 2007; 25
Fair (B43) 2008; 105
Carp (B20) 2013; 76
Biswal (B15) 1995; 34
Golestani (B55) 2018; 8
Hahamy (B63) 2014; 4
Lund (B89) 2005; 26
Power (B114) 2014; 84
White (B155) 2010; 63
Eschelbach (B39) 2018; 81
Stanisz (B136) 2005; 54
Jo (B73) 2010; 52
Lee (B83) 2010; 52
Andersson (B2) 2001; 13
Maclaren (B91) 2012; 7
Jenkinson (B71) 2002; 17
Faraji-Dana (B45); 270
Krueger (B79) 2006
Bhaganagarapu (B13) 2013; 7
Cox (B28) 1996; 29
Glover (B54) 1998; 39
Muraskin (B94) 2013; 68
Ollinger (B101) 2009; 47
Benjaminsen (B10) 2016
Hoinkiss (B67) 2018
Smith (B134); 80
Glover (B53) 2012; 62
Vanderwal (B149) 2015; 122
Desjardins (B31) 2001; 13
Hoinkiss (B68) 2017; 78
Raj (B120) 2001; 46
Power (B113) 2012; 59
Courchesne (B27) 2005; 15
References_xml – volume: 12
  year: 2018
  ident: B52
  article-title: The influence of preprocessing steps on graph theory measures derived from resting state fMRI.
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2018.00008
– volume: 117
  start-page: 67
  year: 2015
  ident: B132
  article-title: Optimization of rs-fMRI Pre-processing for enhanced signal-noise separation, test-retest reliability, and group discrimination.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.05.015
– year: 2015
  ident: B22
  article-title: Multimodal MRI neuroimaging with motion compensation based on particle filtering.
  publication-title: ArXiv
– volume: 52
  start-page: 571
  year: 2010
  ident: B73
  article-title: Mapping sources of correlation in resting state FMRI, with artifact detection and removal.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.04.246
– volume: 60
  start-page: 623
  year: 2012
  ident: B126
  article-title: Impact of in-scanner head motion on multiple measures of functional connectivity: relevance for studies of neurodevelopment in youth.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.12.063
– volume: 56
  start-page: 924
  year: 2007
  ident: B3
  article-title: Disruption of large-scale brain systems in advanced aging.
  publication-title: Neuron
  doi: 10.1016/J.NEURON.2007.10.038
– volume: 25
  start-page: 58
  year: 2017
  ident: B36
  article-title: Children’s head motion during fMRI tasks is heritable and stable over time.
  publication-title: Dev. Cogn. Neurosci.
  doi: 10.1016/j.dcn.2017.01.011
– volume: 113
  start-page: 1
  year: 2015
  ident: B143
  article-title: Prospective motion correction of 3D echo-planar imaging data for functional MRI using optical tracking.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.03.013
– volume: 79
  start-page: 1911
  year: 2018
  ident: B90
  article-title: Prospective motion correction using coil-mounted cameras: cross-calibration considerations.
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.26838
– volume: 75
  start-page: 247
  year: 2005
  ident: B16
  article-title: A 4.0-T fMRI study of brain connectivity during word fluency in first-episode schizophrenia.
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2004.09.025
– volume: 29
  start-page: 54
  year: 2006
  ident: B88
  article-title: Non-white noise in fMRI: does modelling have an impact?
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.07.005
– volume: 171
  start-page: 415
  year: 2018
  ident: B108
  article-title: An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.12.073
– volume: 59
  start-page: 2142
  year: 2012
  ident: B113
  article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.10.018
– volume: 169
  start-page: 1079
  year: 2010
  ident: B30
  article-title: Preparing children with a mock scanner training protocol results in high quality structural and functional MRI scans.
  publication-title: Eur. J. Pediatr.
  doi: 10.1007/s00431-010-1181-z
– volume: 62
  start-page: 706
  year: 2012
  ident: B53
  article-title: Spiral imaging in fMRI.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.10.039
– volume: 4
  start-page: 96
  year: 2016
  ident: B57
  article-title: fMRI simulator training to suppress head motion.
  publication-title: Neurosci. Biomed. Eng.
  doi: 10.2174/2213385204666160425155104
– volume: 63
  start-page: 339
  year: 2010
  ident: B87
  article-title: Motion correction using an enhanced floating navigator and GRAPPA operations.
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22200
– volume: 34
  start-page: 1206
  ident: B44
  article-title: A robust method for suppressing motion-induced coil sensitivity variations during prospective correction of head motion in fMRI.
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2016.06.005
– volume: 8
  year: 2013
  ident: B32
  article-title: Spatio-temporal correlation tensors reveal functional structure in human brain.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0082107
– volume: 63
  start-page: 1443
  year: 2012
  ident: B145
  article-title: An empirical comparison of surface-based and volume-based group studies in neuroimaging.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.06.019
– volume: 67
  start-page: 1237
  year: 2012
  ident: B1
  article-title: Hybrid prospective and retrospective head motion correction to mitigate cross-calibration errors.
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.23101
– start-page: 6008
  year: 2014
  ident: B62
  article-title: Motion Correction of EPI sequences using their intrinsic high-frequency content
  publication-title: Proceedings of the International Society for Magnetic Resonance in Medicine
– start-page: 389
  year: 2018
  ident: B23
  article-title: Cortical depth dependent resting state fMRI with motion correction
  publication-title: Proceedings of the Joint Annual Meeting ISMRM-ESMRMB
– volume: 70
  start-page: 639
  ident: B102
  article-title: Prospective motion correction using inductively coupled wireless RF coils.
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24845
– volume: 67
  start-page: 1210
  year: 2012
  ident: B131
  article-title: Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty.
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.23097
– volume: 39
  start-page: 234
  year: 1998
  ident: B81
  article-title: A prospective approach to correct for inter-image head rotation in FMRI.
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910390210
– volume: 47
  start-page: 888
  year: 2002
  ident: B146
  article-title: Respiration-induced B0 fluctuations and their spatial distribution in the human brain at 7 Tesla.
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.10145
– volume: 14
  start-page: 284
  year: 2001
  ident: B130
  article-title: Quantifying head motion associated with motor tasks used in fMRI.
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0829
– volume: 13
  start-page: 751
  year: 2001
  ident: B31
  article-title: Removal of confounding effects of global signal in functional MRI analyses.
  publication-title: Neuroimage
  doi: 10.1006/NIMG.2000.0719
– volume: 161
  start-page: 80
  year: 2017
  ident: B33
  article-title: Real-time motion analytics during brain MRI improve data quality and reduce costs.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.08.025
– volume: 69
  start-page: 803
  ident: B103
  article-title: Combined prospective and retrospective correction to reduce motion-induced image misalignment and geometric distortions in EPI.
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24285
– volume: 7
  year: 2013
  ident: B13
  article-title: An automated method for identifying artifact in independent component analysis of resting-state fMRI.
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2013.00343
– volume: 26
  start-page: 960
  year: 2005
  ident: B89
  article-title: Motion or activity: their role in intra-and inter-subject variation in fMRI.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.02.021
– volume: 51
  start-page: 1194
  year: 2004
  ident: B138
  article-title: Dynamic field map estimation using a spiral-in/spiral-out acquisition.
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.20079
– volume: 154
  start-page: 188
  year: 2017
  ident: B60
  article-title: Hand classification of fMRI ICA noise components.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.12.036
– volume: 26
  start-page: 147
  year: 2008
  ident: B77
  article-title: Comprehensive mathematical simulation of functional magnetic resonance imaging time series including motion-related image distortion and spin saturation effect.
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2007.05.007
– volume: 20
  start-page: 702
  year: 1996
  ident: B121
  article-title: Functional MRI: primary motor cortex localization in patients with brain tumors.
  publication-title: J. Comput. Assist. Tomogr.
  doi: 10.1097/00004728-199609000-00003
– volume: 72
  start-page: 381
  ident: B166
  article-title: Propagation of calibration errors in prospective motion correction using external tracking.
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24943
– volume: 36
  start-page: 436
  year: 1996
  ident: B82
  article-title: Real-time adaptive motion correction in functional MRI.
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910360316
– volume: 1484
  start-page: 50
  year: 2012
  ident: B119
  article-title: A preliminary study of alterations in default network connectivity in post-traumatic stress disorder patients following recent trauma.
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2012.09.029
– volume: 47
  year: 2009
  ident: B101
  article-title: The secret life of motion covariates.
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(09)71160-71167
– volume: 31
  start-page: 1038
  year: 2006
  ident: B169
  article-title: Magnetic resonance imaging of freely moving objects: prospective real-time motion correction using an external optical motion tracking system.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.01.039
– volume: 15
  start-page: 886
  year: 1991
  ident: B11
  article-title: Head holder for PET, CT, and MR studies.
  publication-title: J. Comput. Assist. Tomogr.
  doi: 10.1097/00004728-199109000-199109034
– volume: 54
  start-page: 507
  year: 2005
  ident: B136
  article-title: T1, T2 relaxation and magnetization transfer in tissue at 3T.
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.20605
– volume: 7
  year: 2009
  ident: B137
  article-title: Development of large-scale functional brain networks in children.
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000157
– volume: 4
  start-page: 395
  year: 2014
  ident: B63
  article-title: Save the global: global signal connectivity as a tool for studying clinical populations with functional magnetic resonance imaging.
  publication-title: Brain Connect.
  doi: 10.1089/brain.2014.0244
– volume: 16
  start-page: 111
  year: 2019
  ident: B41
  article-title: fMRIPrep: a robust preprocessing pipeline for functional MRI.
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0235-234
– volume: 76
  start-page: 436
  year: 2013
  ident: B20
  article-title: Optimizing the order of operations for movement scrubbing: comment on power et al.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.12.061
– volume: 4
  start-page: S95
  year: 1996
  ident: B170
  article-title: Clinical functional image analysis: artifact detection and reduction.
  publication-title: Neuroimage
  doi: 10.1006/NIMG.1996.0059
– volume: 147
  start-page: 111
  year: 2017
  ident: B69
  article-title: Less head motion during MRI under task than resting-state conditions.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.12.002
– volume: 68
  start-page: 140
  year: 2012
  ident: B78
  article-title: Functional magnetic resonance imaging using PROPELLER-EPI.
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.23220
– volume: 39
  start-page: 1227
  year: 2008
  ident: B144
  article-title: Automatic independent component labeling for artifact removal in fMRI.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.10.013
– volume: 22
  start-page: 551
  year: 2009
  ident: B18
  article-title: A dual echo approach to removing motion artefacts in fMRI time series.
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.1371
– volume: 270
  start-page: 46
  ident: B45
  article-title: Interactions between head motion and coil sensitivity in accelerated fMRI.
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2016.06.005
– volume: 8
  start-page: 82
  year: 2018
  ident: B55
  article-title: Simultaneous multislice resting-state functional magnetic resonance imaging at 3 Tesla: slice-acceleration-related biases in physiological effects.
  publication-title: Brain Connect.
  doi: 10.1089/brain.2017.0491
– volume: 154
  start-page: 33
  year: 2017
  ident: B168
  article-title: Prospective motion correction in functional MRI.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.11.014
– volume: 39
  start-page: 279
  year: 1998
  ident: B38
  article-title: Tissue-independent MR tracking of invasive devices with an internal signal source.
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910390215
– volume: 64
  start-page: 240
  year: 2013
  ident: B125
  article-title: An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.08.052
– volume: 112
  start-page: 278
  ident: B117
  article-title: Evaluation of ICA-AROMA and alternative strategies for motion artifact removal in resting state fMRI.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.02.063
– volume: 38
  start-page: 4634
  year: 2011
  ident: B162
  article-title: Spin-history artifact during functional MRI: potential for adaptive correction.
  publication-title: Med. Phys.
  doi: 10.1118/1.3583814
– volume: 171
  start-page: 234
  year: 2018
  ident: B59
  article-title: Behavioral interventions for reducing head motion during MRI scans in children.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.01.023
– volume: 10
  year: 2016
  ident: B164
  article-title: Evaluating the influence of spatial resampling for motion correction in resting-state functional MRI.
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2016.00591
– volume: 17
  start-page: 825
  year: 2002
  ident: B71
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images.
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(02)91132-91138
– volume: 289
  start-page: 509
  year: 2018
  ident: B75
  article-title: Robust motion correction strategy for structural MRI in unsedated children demonstrated with three-dimensional radial MPnRAGE.
  publication-title: Radiology
  doi: 10.1148/radiol.2018180180
– volume: 68
  start-page: 154
  year: 2013
  ident: B94
  article-title: Prospective active marker motion correction improves statistical power in BOLD fMRI.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.11.052
– volume: 81
  start-page: 1147
  year: 2010
  ident: B12
  article-title: Role of resting state functional connectivity MRI in presurgical investigation of mesial temporal lobe epilepsy.
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp.2009.191460
– volume: 44
  start-page: 893
  year: 2009
  ident: B96
  article-title: The impact of global signal regression on resting state correlations: are anti-correlated networks introduced?
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.09.036
– volume: 13
  start-page: 903
  year: 2001
  ident: B2
  article-title: Modeling geometric deformations in EPI time series.
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0746
– volume: 78
  start-page: 2127
  year: 2017
  ident: B68
  article-title: Prospective motion correction in 2D multishot MRI using EPI navigators and multislice-to-volume image registration.
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.26951
– volume: 41
  start-page: 835
  year: 2008
  ident: B4
  article-title: Comparing surface-based and volume-based analyses of functional neuroimaging data in patients with schizophrenia.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.02.052
– volume: 9
  start-page: 407
  year: 1999
  ident: B29
  article-title: Localization of cardiac-induced signal change in fMRI.
  publication-title: Neuroimage
  doi: 10.1006/nimg.1998.0424
– volume: 19
  start-page: 288
  year: 2006
  ident: B116
  article-title: Encoding and reconstruction in parallel MRI.
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.1042
– volume: 26
  start-page: 703
  year: 2008
  ident: B163
  article-title: Concurrent correction of geometric distortion and motion using the map-slice-to-volume method in echo-planar imaging.
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2007.11.001
– volume: 7
  ident: B25
  article-title: Optimizing preprocessing and analysis pipelines for single-subject fMRI: 2. Interactions with ICA, PCA, task contrast and inter-subject heterogeneity.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0031147
– volume: 35
  start-page: 346
  year: 1996
  ident: B50
  article-title: Movement-related effects in fMRI time-series.
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910350312
– volume: 154
  start-page: 174
  year: 2017
  ident: B26
  article-title: Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.03.020
– volume: 2
  start-page: 165
  year: 1995
  ident: B49
  article-title: Spatial registration and normalization of images.
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.460030303
– volume: 5
  start-page: 582
  year: 2015
  ident: B110
  article-title: Using edge voxel information to improve motion regression for rs-fMRI connectivity studies.
  publication-title: Brain Connect.
  doi: 10.1089/brain.2014.0321
– volume: 107
  start-page: 10238
  year: 2010
  ident: B128
  article-title: Neural basis of global resting-state fMRI activity.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0913110107
– volume: 173
  start-page: 127
  year: 2018
  ident: B160
  article-title: Impact of global signal regression on characterizing dynamic functional connectivity and brain states.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.02.036
– volume: 25
  start-page: 894
  year: 2007
  ident: B84
  article-title: Modelling large motion events in fMRI studies of patients with epilepsy.
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2007.03.009
– start-page: 4
  year: 2018
  ident: B51
  article-title: Markerless real-time motion correction for T1- and T2-weighted neuroanatomical MRI
  publication-title: Proceedings of the Joint Annual Meeting ISMRM-ESMRMB
– volume: 46
  start-page: 3331
  year: 2001
  ident: B120
  article-title: Respiratory effects in human functional magnetic resonance imaging due to bulk susceptibility changes.
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/46/12/318
– volume: 8
  start-page: 80
  year: 1999
  ident: B72
  article-title: Sources of distortion in functional MRI data.
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/(sici)1097-0193(1999)8:2/3<80::aid-hbm2>3.0.co;2-c
– volume: 63
  start-page: 1364
  year: 2012
  ident: B93
  article-title: Network-specific effects of age and in-scanner subject motion: a resting-state fMRI study of 238 healthy adults.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.08.004
– volume: 22
  start-page: 139
  year: 1998
  ident: B157
  article-title: Automated image registration: I. General methods and intrasubject, intramodality validation.
  publication-title: J. Comput. Assist. Tomogr.
  doi: 10.1097/00004728-199801000-00027
– volume: 82
  start-page: 208
  year: 2013
  ident: B66
  article-title: The nuisance of nuisance regression: spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.116
– volume: 98
  year: 2019
  ident: B85
  article-title: Does pre-scanning training improve the image quality of children receiving magnetic resonance imaging?: a meta-analysis of current studies.
  publication-title: Medicine
  doi: 10.1097/MD.0000000000014323
– volume: 44
  start-page: 181
  year: 2014
  ident: B6
  article-title: High success rates of sedation-free brain MRI scanning in young children using simple subject preparation protocols with and without a commercial mock scanner-the diabetes research in children network (DirecNet) experience.
  publication-title: Pediatr. Radiol.
  doi: 10.1007/s00247-013-2798-2797
– volume: 7
  year: 2012
  ident: B91
  article-title: Measurement and correction of microscopic head motion during magnetic resonance imaging of the brain.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0048088
– volume: 27
  start-page: 779
  year: 2006
  ident: B74
  article-title: Motion correction and the use of motion covariates in multiple-subject fMRI analysis.
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20219
– volume: 62
  start-page: 943
  year: 2009
  ident: B105
  article-title: Prospective real-time correction for arbitrary head motion using active markers.
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22082
– volume: 10
  year: 2018
  ident: B86
  article-title: Resting-State functional connectivity predicts cognitive impairment related to Alzheimer’s Disease.
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2018.00094
– volume: 35
  start-page: 1
  year: 2014
  ident: B159
  article-title: Functional magnetic resonance imaging movers and shakers: does subject-movement cause sampling bias?
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22150
– volume: 37
  start-page: 90
  year: 2007
  ident: B9
  article-title: A component based noise correction method (CompCor) for BOLD and perfusion based fMRI.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.04.042
– volume: 79
  start-page: 2046
  year: 2018
  ident: B5
  article-title: Prospective motion correction with NMR markers using only native sequence elements.
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.26877
– volume: 96
  start-page: 22
  year: 2014
  ident: B98
  article-title: Reduction of motion-related artifacts in resting state fMRI using aCompCor.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.03.028
– volume: 173
  start-page: 255
  year: 1989
  ident: B34
  article-title: Adaptive technique for high-definition MR imaging of moving structures.
  publication-title: Radiology
  doi: 10.1148/radiology.173.1.2781017
– volume: 37
  start-page: 1286
  year: 2007
  ident: B7
  article-title: Isolating physiologic noise sources with independently determined spatial measures.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.07.004
– volume: 83
  start-page: 550
  year: 2013
  ident: B14
  article-title: The effect of scan length on the reliability of resting-state fMRI connectivity estimates.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.099
– volume: 154
  start-page: 169
  year: 2017
  ident: B97
  article-title: Towards a consensus regarding global signal regression for resting state functional connectivity MRI.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.11.052
– year: 2017
  ident: B151
  article-title: The impact of diverse preprocessing pipelines on brain functional connectivity
  publication-title: Proceedings of the 25th European Signal Processing Conference, EUSIPCO
  doi: 10.23919/EUSIPCO.2017.8081690
– volume: 80
  start-page: 144
  ident: B134
  article-title: Resting-state fMRI in the human connectome project.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.039
– volume: 31
  start-page: 436
  year: 2007
  ident: B92
  article-title: Comparison of fMRI statistical software packages and strategies for analysis of images containing random and stimulus-correlated motion.
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2007.04.002
– volume: 105
  start-page: 536
  year: 2015
  ident: B115
  article-title: Recent progress and outstanding issues in motion correction in resting state fMRI.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.10.044
– volume: 37
  start-page: 6394
  year: 2017
  ident: B111
  article-title: Evidence for functional networks within the human brain’s white matter.
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3872-16.2017
– volume: 105
  start-page: 4028
  year: 2008
  ident: B43
  article-title: The maturing architecture of the brain’s default network.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0800376105
– volume: 35
  start-page: 434
  year: 2017
  ident: B107
  article-title: Optimal slice timing correction and its interaction with fMRI parameters and artifacts.
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.08.006
– volume: 69
  start-page: 734
  year: 2013
  ident: B123
  article-title: Real-time correction by optical tracking with integrated geometric distortion correction for reducing motion artifacts in functional MRI.
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24309
– start-page: 444
  year: 2002
  ident: B95
  article-title: Position-history and spin-history artifacts in fMRI time series
  publication-title: Proceedings of the SPIE Medical Imaging 2002: Physiology and Function from Multidimensional Images International Society for Optics and Photonics
  doi: 10.1117/12.463613
– volume: 1
  start-page: 496
  year: 2011
  ident: B19
  article-title: Global and system-specific resting-state fMRI fluctuations are uncorrelated: principal component analysis reveals anti-correlated networks.
  publication-title: Brain Connect.
  doi: 10.1089/brain.2011.0065
– volume: 5
  year: 2010
  ident: B46
  article-title: Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0015710
– volume: 50
  start-page: 839
  year: 2003
  ident: B122
  article-title: Single-shot magnetic field mapping embedded in echo-planar time-course imaging.
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.10587
– volume: 64
  start-page: 526
  year: 2013
  ident: B17
  article-title: Removing motion and physiological artifacts from intrinsic BOLD fluctuations using short echo data.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.09.043
– volume: 15
  start-page: 225
  year: 2005
  ident: B27
  article-title: Why the frontal cortex in autism might be talking only to itself: local over-connectivity but long-distance disconnection.
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2005.03.001
– volume: 44
  start-page: 457
  year: 2000
  ident: B139
  article-title: Prospective acquisition correction for head motion with image-based tracking for real-time fMRI.
  publication-title: Magn. Reson. Med.
  doi: 10.1002/1522-2594(200009)44:3<457::aid-mrm17>3.3.co;2-i
– volume: 34
  start-page: 537
  year: 1995
  ident: B15
  article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar mri.
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910340409
– volume: 31
  start-page: 283
  year: 1994
  ident: B64
  article-title: Artifacts due to stimulus-correlated motion in functional imaging of the brain.
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910310307
– volume: 63
  start-page: 91
  year: 2010
  ident: B155
  article-title: PROMO: real-time prospective motion correction in MRI using image-based tracking.
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22176
– volume: 11
  start-page: 49
  year: 2000
  ident: B61
  article-title: Characterization and correction of interpolation effects in the realignment of fMRI time series.
  publication-title: Neuroimage
  doi: 10.1006/nimg.1999.0515
– volume: 27
  start-page: 801
  year: 2014
  ident: B65
  article-title: head motion parameters in fMRI differ between patients with mild cognitive impairment and Alzheimer Disease versus elderly control subjects.
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-014-0358-356
– start-page: 3
  year: 2018
  ident: B67
  article-title: Prospective Motion Correction in Multiband fMRI Using Multislice-to-Volume Image Registration
  publication-title: Proceedings of the 2018 Joint Annual Meeting of the International Society for Magnetic Resonance in Medicine and the European Society of Magnetic Resonance in Medicine and Biology
  doi: 10.1002/mrm.26951.5
– volume: 76
  start-page: 183
  year: 2013
  ident: B161
  article-title: A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.03.004
– volume: 59
  start-page: 431
  year: 2012
  ident: B147
  article-title: The influence of head motion on intrinsic functional connectivity MRI.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.07.044
– volume: 28
  start-page: 523
  year: 2015
  ident: B133
  article-title: Optical tracking with two markers for robust prospective motion correction for brain imaging.
  publication-title: Magn. Reson. Mater. Phys. Biol. Med.
  doi: 10.1007/s10334-015-0493-4
– volume: 78
  start-page: 527
  year: 2017
  ident: B56
  article-title: Motion correction for functional MRI with three-dimensional hybrid radial-Cartesian EPI.
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.26390
– volume: 66
  start-page: 73
  year: 2011
  ident: B104
  article-title: Echo-planar imaging with prospective slice-by-slice motion correction using active markers.
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22780
– volume: 122
  start-page: 222
  year: 2015
  ident: B149
  article-title: Inscapes: a movie paradigm to improve compliance in functional magnetic resonance imaging.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.07.069
– volume: 124
  start-page: 24
  year: 2016
  ident: B156
  article-title: Differences in the resting-state fMRI global signal amplitude between the eyes open and eyes closed states are related to changes in EEG vigilance.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.08.053
– volume: 17
  start-page: 666
  ident: B135
  article-title: Functional connectomics from resting-state fMRI.
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2013.09.016
– volume: 90
  start-page: 449
  year: 2014
  ident: B124
  article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.11.046
– volume: 7
  start-page: 365
  year: 1997
  ident: B158
  article-title: Inadequacy of motion correction algorithms in functional MRI: role of susceptibility-induced artifacts.
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.1880070219
– start-page: 1860
  year: 2016
  ident: B10
  article-title: Real Time MRI motion correction with markerless tracking
  publication-title: Proceedings of the International Society for Magnetic Resonance in Medicine
– volume: 68
  start-page: 1247
  year: 2012
  ident: B150
  article-title: Reference-free unwarping of EPI data using dynamic off-resonance correction with multiecho acquisition (DOCMA).
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24119
– volume: 25
  start-page: 35
  year: 2007
  ident: B112
  article-title: CORSICA: correction of structured noise in fMRI by automatic identification of ICA components.
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2006.09.042
– volume: 47
  start-page: 32
  year: 2002
  ident: B154
  article-title: Spherical navigator echoes for full 3D rigid body motion measurement in MRI.
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.10012
– volume: 155
  start-page: 75
  year: 2007
  ident: B37
  article-title: Assessment and prevention of head motion during imaging of patients with attention deficit hyperactivity disorder.
  publication-title: Psychiatry Res.
  doi: 10.1016/j.pscychresns.2006.12.009
– volume: 84
  start-page: 320
  year: 2014
  ident: B114
  article-title: Methods to detect, characterize, and remove motion artifact in resting state fMRI.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.08.048
– volume: 39
  start-page: 101
  year: 2017
  ident: B47
  article-title: Slice-to-volume medical image registration: a survey.
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.04.010
– volume: 35
  start-page: 1538
  year: 1994
  ident: B58
  article-title: Head movement in normal subjects during simulated PET brain imaging with and without head restraint.
  publication-title: J. Nucl. Med.
– volume: 11
  start-page: 1005
  year: 2004
  ident: B35
  article-title: The effects of geometric distortion correction on motion realignment in fMRI.
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2004.04.022
– volume: 33
  start-page: 609
  ident: B24
  article-title: Optimizing preprocessing and analysis pipelines for single-subject fMRI. I. Standard temporal motion and physiological noise correction methods.
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.21238
– volume: 38
  start-page: 1610
  year: 2019
  ident: B148
  article-title: A wireless radio frequency triggered acquisition device (WRAD) for self-synchronised measurements of the rate of change of the MRI gradient vector field for motion tracking.
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2891774
– volume: 117
  start-page: 13
  year: 2013
  ident: B129
  article-title: Improving MRT image quality in patients with movement disorders.
  publication-title: Acta Neurochir. Suppl.
  doi: 10.1007/978-3-7091-1482-7_3
– volume: 17
  start-page: 1521
  year: 2002
  ident: B141
  article-title: Noise reduction in BOLD-Based fMRI using component analysis.
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1200
– volume: 6
  year: 2018
  ident: B140
  article-title: Factors associated with successful MRI scanning in unsedated young children.
  publication-title: Front. Pediatr.
  doi: 10.3389/fped.2018.00146
– volume: 112
  start-page: 267
  ident: B118
  article-title: ICA-AROMA: a robust ICA-based strategy for removing motion artifacts from fMRI data.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.02.064
– volume: 28
  start-page: 529
  year: 2005
  ident: B99
  article-title: Comparison of fMRI motion correction software tools.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.05.058
– volume: 92
  start-page: 8
  ident: B167
  article-title: Simultaneous Multi-Slice fMRI using spiral trajectories.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.01.056
– volume: 81
  start-page: 719
  year: 2018
  ident: B39
  article-title: Comparison of prospective head motion correction with NMR field probes and an optical tracking system.
  publication-title: Magn. Reson. Med
  doi: 10.1002/mrm.27343
– volume: 16
  start-page: 217
  year: 2002
  ident: B70
  article-title: Image distortion correction in fMRI: a quantitative evaluation.
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.1054
– volume: 101
  start-page: 21
  year: 2014
  ident: B8
  article-title: SimPACE: generating simulated motion corrupted BOLD data with synthetic-navigated acquisition for the development and evaluation of SLOMOCO: a new, highly effective slicewise motion correction.
  publication-title: Neuroimage
  doi: 10.1016/J.NEUROIMAGE.2014.06.038
– volume: 14
  start-page: 709
  year: 2001
  ident: B48
  article-title: Motion correction algorithms may create spurious brain activations in the absence of subject motion.
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0869
– volume: 95
  start-page: 287
  year: 2014
  ident: B109
  article-title: A wavelet method for modeling and despiking motion artifacts from resting-state fMRI time series.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.03.012
– volume: 39
  start-page: 361
  year: 1998
  ident: B54
  article-title: Self-navigated spiral fMRI: interleaved versus single-shot.
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910390305
– volume: 110
  start-page: 16187
  year: 2013
  ident: B80
  article-title: Integrated strategy for improving functional connectivity mapping using multiecho fMRI.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1301725110
– start-page: 269
  year: 1999
  ident: B42
  article-title: Real time head motion correction for functional MRI
  publication-title: Proceedings of the International Society for Magnetic Resonance in Medicine
– volume: 29
  start-page: 162
  year: 1996
  ident: B28
  article-title: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages.
  publication-title: Comput. Biomed. Res.
  doi: 10.1006/cbmr.1996.0014
– volume: 30
  start-page: 1481
  year: 2009
  ident: B165
  article-title: Quantification of head motion in children during various fMRI language tasks.
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20616
– volume: 22
  start-page: 1427
  year: 2003
  ident: B106
  article-title: Simultaneous registration and activation detection for fMRI.
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2003.819294
– volume: 41
  start-page: 964
  year: 1999
  ident: B76
  article-title: Motion correction in fMRI via registration of individual slices into an anatomical volume.
  publication-title: Magn. Reson. Med.
  doi: 10.1002/(sici)1522-2594(199905)41:5<964::aid-mrm16>3.3.co;2-4
– volume: 52
  start-page: 1428
  year: 2010
  ident: B83
  article-title: Rapid 3D radial multi-echo functional magnetic resonance imaging.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.05.004
– volume: 47
  start-page: 1408
  year: 2009
  ident: B153
  article-title: Correlations and anticorrelations in resting-state functional connectivity MRI: a quantitative comparison of preprocessing strategies.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.05.005
– year: 2017
  ident: B40
  article-title: Prospective Head Motion Correction Using Multiple Tracking Modalities
  publication-title: Proceedings of the ESMRMB Annual Scientific Meeting
– volume: 68
  start-page: 1828
  year: 2012
  ident: B21
  article-title: A method to determine the necessity for global signal regression in resting-state fMRI studies.
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24201
– volume: 68
  start-page: 389
  year: 2012
  ident: B142
  article-title: Volumetric navigators for prospective motion correction and selective reacquisition in neuroanatomical MRI.
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.23228
– start-page: 3196
  year: 2006
  ident: B79
  article-title: Prospective Intra-Image Compensation for Non-Periodic Rigid Body Motion Using Active Markers
  publication-title: Proceedings of the International Society for Magnetic Resonance in Medicine
– volume: 6
  start-page: 156
  year: 1997
  ident: B100
  article-title: Anatomic localization and quantitative analysis of gradient refocused Echo-Planar fMRI susceptibility artifacts.
  publication-title: Neuroimage
  doi: 10.1006/nimg.1997.0289
– start-page: 746
  year: 2006
  ident: B152
  article-title: Real-time Motion Correction in 3D EPI using Cloverleaf Navigators
  publication-title: Proceedings 14th Scientific Meeting, International Society for Magnetic Resonance in Medicine
SSID ssj0062842
Score 2.44684
SecondaryResourceType review_article
Snippet Resting state functional magnetic resonance imaging (rs-fMRI) has become an indispensable tool in neuroscience research. Despite this, rs-fMRI signals are...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 825
SubjectTerms Algorithms
Brain research
Functional magnetic resonance imaging
image processing
Medical research
motion artifacts
motion compensation
Nervous system
Neural networks
Neuroscience
NMR
noise
Nuclear magnetic resonance
Quality control
resting state fMRI
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB7EkxfxbX0RQQQPZdsmaRtvKj5hPYiCt5K0iQqaFV0P_ntn0u6yK6IXDz00TdP0mzy-adJvAPZqqY1KDDbeXOhYWCvjUucitto4ZMBNXgYB0_51fnEnru7l_USoL9oT1soDt8D1SkfqgonLElGLrCmUtEmpnVYcC8bJjUZfnPNGzlQ7Buc46GbtoiS6YKrn_JMnbe6UxClLCos9MQkFrf6fCOb3fZITE8_ZAsx3jJEdtTVdhBnrl2D5yKO3_PLJ9lnYwxk-ji9DfEOiGf6BBQ7JXP_m8pCdDyjltg3Iw5DwsX4I3fO-Andnp7cnF3EXECGuhUqGcaZLS4dG5KWTtmhU1qBHhLBI7HlJXRfIz0yueNoYBAddkVQap5uyMTnPJF-FWT_wdh2YSZVJMoPesSmEy6TRvKyVdJw3eOpMBL0RQlXdqYVT0IrnCr0GwrQKmFaEaRUwjeBgfMdrq5TxS95jAn2cjzSuQwJavuosX_1l-Qi2Riaruo6Hz0A6xgVHvz6C3fFl7DK0DqK9HXxQHmQpgqTTIlhrLTyuCU-RUSLHjaCYsv1UVaev-KfHIMtNPzxh0Rv_8W6bMEdo0cfrlG_B7PDtw24j-xmandDQvwDpiQFl
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB1Be-GCgPIRKMhICIlDtElsJ3YvqEUtBWkrtGql3iI7sUslcEq7PfDvO-N4o25V9ZBDYidxZjzjN7bzBuBTJ43VhcXOWwuTC-dkrkwtcmesRwTc1yoSmM6P6sMT8fNUnqYJt6u0rXLlE6Oj7oeO5shnFY6zXHAM2L5e_MspaxStrqYUGo9hE12wwuBrc2__6Ndi5YtrdL5xvbOmf4MQnI8LlRiW6ZkP54H4uksirFSUKvvWwBT5--8DnXf3Tt4ajA6ewdOEItnuqPbn8MiFF7C1GzCC_vuffWZxX2ecMN-CfEFEGuGMRVzJ_HzxY4d9H-jK8ZikhyEIZPOYzufqJZwc7B9_O8xTkoS8E7pY5pVRjg6D2pBeuqbXVY9RUtU3Eq2x6LoGMZutNS9761CKaHTSetOr3ta8kvwVbIQhuDfAbKltUVmMmG0jfCWt4arT0nPe46m3GcxWEmq7xCBOiSz-tBhJkEzbKNOWZNpGmWbwZbrjYmTPeKDuHgl9qke81_HCcHnWJjNqlSeuycJXhejoE7V0hTLeaI7dDKFOBtsrlbXJGPEdU9fJ4ONUjGZEayMmuOGa6iByEUSnlsHrUcNTS3iJKBNxbwbNmu7XmrpeEs5_R6pu-gkKH_324Wa9gyckB5qqLvk2bCwvr917xDpL-yF16BvtL_zj
  priority: 102
  providerName: ProQuest
Title Resting State fMRI: Going Through the Motions
URI https://www.ncbi.nlm.nih.gov/pubmed/31456656
https://www.proquest.com/docview/2273343888
https://www.proquest.com/docview/2281846121
https://pubmed.ncbi.nlm.nih.gov/PMC6700228
https://doaj.org/article/8f03130f204c42d795e08afa934ee222
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9RAFD5o--KLqPUSrcsIIvgQm8wlF0GklV4UtsjShX0bZpKZtlBndbsF--89Z5KNriziQwJJJrcz52S-bybzHYDXjTK2ziw6byFNKp1TaWUKmTpjPSLgtqiigOn4tDiZyi8zNfs9Pbo34PVGakf5pKaLq3c_f9x-xID_QIwT29s9Hy4DKW_nJD2JjOcubGO7VFKYjuUwplDghziOfRY0TwiBejdoufEKa41U1PLfBED__o_yj4bp6AHc7xEl2-9c4CHcceER7OwHZNPfbtkbFv_xjJ3nO5BOSFQjnLOIMZkfTz6_Z8dz2nPWJexhCAjZOKb2uX4M06PDs08naZ8wIW1knS1TbipHi8GaUV65sq15i4yJt6XCyMyapkT8Zota5K11nCNVyZX1pq1aWwiuxBPYCvPgngGzeW0zbpE921J6rqwRVVMrL0SLm94msLeykG56NXFKanGlkVWQTXW0qSab6mjTBN4OZ3zvlDT-UfaAjD6UIw3suGO-ONd9SOnKk-5k5nkmG3rFWrmsMt7UAl0OYU8Cu6sq0yu_0vjSQkiBvD-BV8NhDCkaJzHBzW-oDKIYSdJqCTztanh4EpEj4kQMnEC5Vvdrj7p-JFxeRNlumhCFl37-H_d9AffIGNR3nYtd2FoubtxLBD9LO4Ltg8PTr5NR7DzA9fEsH0U__wX3mASy
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5V6QEuCCgPQ4FFAiQOVux9-IGEUAstCW0iFKVSb2bX3i2VWru0qVD_FL-RmbUdNQj11kMOsTfxenZ29vv28Q3Am1Jpk0cGnTeROpTWqjDTiQytNg4RcJVkXsB0Mk1GB_LboTpcgz_9WRjaVtnHRB-oq6akOfIhx3FWSIGE7dPZr5CyRtHqap9Co3WLPXv1GynbxcfxF2zft5zv7sw_j8Iuq0BYyjxahFxnlj4aq6-csmmV8wppBa9She4blWWKIMckuYgrY_Gx6KXKOF1llUkEpywRGPLXpUAqM4D17Z3p91kf-xMM9n59NaGzSEgG2oVRpIH50NXHNemDxySQmVFq7msDoc8X8D-Q--9ezWuD3-59uNehVrbVutkDWLP1Q9jYqpGxn16xd8zvI_UT9BsQzki4oz5iHscyN5mNP7CvDV2Zt0mBGIJONvHpgy4ewcGtmO8xDOqmtk-BmTg3ETfI0E0qHVdGi6zMlROiwq_OBDDsLVSUnWI5Jc44KZC5kE0Lb9OCbFp4mwbwfvmLs1at44ay22T0ZTnS2fYXmvOjouu2ReZI2zJyPJIlvWKubJRpp3OBbo3QKoDNvsmKrvPjM5auGsDr5W3strQWo2vbXFIZREqS5NsCeNK28LImIkZUizg7gHSl7VequnqnPv7ppcHp0BX-9bObq_UK7ozmk_1ifzzdew53ySY0TR6LTRgszi_tC8RZC_Oyc24GP267P_0FaY86BQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB6hRap6qVroIy0FV2or9RBtYsd5VKoQFLZs6a7QCiRuwU5sitQmFBZV_DV-HTPOQ2xVceOwh028G2c8Hn-fH98AvC-k0lmg0XnjSPmRMdJPVRz5RmmLCLiMUydgOpnGe0fR92N5vAQ33VkY2lbZxUQXqMu6oDnyIcdxVkSCCJttt0Uc7Iw2z__4lEGKVlq7dBqNi-yb679I3y6_jHewrT9wPto9_LrntxkG_CLKgrnPVWroo_BVpJUmKTNeIsXgZSLRlYOiSBDw6DgTYakNVgE9VmqryrTUseCUMQLD_3KCrCgYwPL27vRg1o0DMQZ-t9Ya07kkJAbNIilSwmxoq7OKtMJDEstMKU33nUHR5Q74H-D9d9_mnYFw9BSetAiWbTUu9wyWTLUCq1sVsvff1-wjc3tK3WT9KvgzEvGoTpnDtMxOZuPP7FtNVw6bBEEMASibuFRCl8_h6EHM9wIGVV2ZV8B0mOmAa2TrOoksl1qJtMikFaLEr1Z7MOwslBetejkl0fiVI4shm-bOpjnZNHc29eBT_4vzRrnjnrLbZPS-HGluuwv1xWneduE8taRzGVgeRAW9YiZNkCqrMoEujjDLg7WuyfI2EOAzerf14F1_G7swrcuoytRXVAZRU0RSbh68bFq4r4kIEeEi5vYgWWj7haou3qnOfjqZcDqAhX_9-v5qbcAj7Ef5j_F0_w08JpPQjHko1mAwv7gybxFyzfV669sMTh66O90CAgA-Og
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resting+State+fMRI%3A+Going+Through+the+Motions&rft.jtitle=Frontiers+in+neuroscience&rft.au=Maknojia%2C+Sanam&rft.au=Churchill%2C+Nathan+W&rft.au=Schweizer%2C+Tom+A&rft.au=Graham%2C+S+J&rft.date=2019-08-13&rft.issn=1662-4548&rft.volume=13&rft.spage=825&rft_id=info:doi/10.3389%2Ffnins.2019.00825&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon