Powerful Statistical Inference for Nested Data Using Sufficient Summary Statistics
Hierarchically-organized data arise naturally in many psychology and neuroscience studies. As the standard assumption of independent and identically distributed samples does not hold for such data, two important problems are to accurately estimate group-level effect sizes, and to obtain powerful sta...
Saved in:
Published in | Frontiers in human neuroscience Vol. 12; p. 103 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
19.03.2018
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hierarchically-organized data arise naturally in many psychology and neuroscience studies. As the standard assumption of independent and identically distributed samples does not hold for such data, two important problems are to accurately estimate group-level effect sizes, and to obtain powerful statistical tests against group-level null hypotheses. A common approach is to summarize subject-level data by a single quantity per subject, which is often the mean or the difference between class means, and treat these as samples in a group-level
-test. This "naive" approach is, however, suboptimal in terms of statistical power, as it ignores information about the intra-subject variance. To address this issue, we review several approaches to deal with nested data, with a focus on methods that are easy to implement. With what we call the sufficient-summary-statistic approach, we highlight a computationally efficient technique that can improve statistical power by taking into account within-subject variances, and we provide step-by-step instructions on how to apply this approach to a number of frequently-used measures of effect size. The properties of the reviewed approaches and the potential benefits over a group-level
-test are quantitatively assessed on simulated data and demonstrated on EEG data from a simulated-driving experiment. |
---|---|
AbstractList | Hierarchically-organized data arise naturally in many psychology and neuroscience studies. As the standard assumption of independent and identically distributed samples does not hold for such data, two important problems are to accurately estimate group-level effect sizes, and to obtain powerful statistical tests against group-level null hypotheses. A common approach is to summarize subject-level data by a single quantity per subject, which is often the mean or the difference between class means, and treat these as samples in a group-level t-test. This "naive" approach is, however, suboptimal in terms of statistical power, as it ignores information about the intra-subject variance. To address this issue, we review several approaches to deal with nested data, with a focus on methods that are easy to implement. With what we call the sufficient-summary-statistic approach, we highlight a computationally efficient technique that can improve statistical power by taking into account within-subject variances, and we provide step-by-step instructions on how to apply this approach to a number of frequently-used measures of effect size. The properties of the reviewed approaches and the potential benefits over a group-level t-test are quantitatively assessed on simulated data and demonstrated on EEG data from a simulated-driving experiment.Hierarchically-organized data arise naturally in many psychology and neuroscience studies. As the standard assumption of independent and identically distributed samples does not hold for such data, two important problems are to accurately estimate group-level effect sizes, and to obtain powerful statistical tests against group-level null hypotheses. A common approach is to summarize subject-level data by a single quantity per subject, which is often the mean or the difference between class means, and treat these as samples in a group-level t-test. This "naive" approach is, however, suboptimal in terms of statistical power, as it ignores information about the intra-subject variance. To address this issue, we review several approaches to deal with nested data, with a focus on methods that are easy to implement. With what we call the sufficient-summary-statistic approach, we highlight a computationally efficient technique that can improve statistical power by taking into account within-subject variances, and we provide step-by-step instructions on how to apply this approach to a number of frequently-used measures of effect size. The properties of the reviewed approaches and the potential benefits over a group-level t-test are quantitatively assessed on simulated data and demonstrated on EEG data from a simulated-driving experiment. Hierarchically-organized data arise naturally in many psychology and neuroscience studies. As the standard assumption of independent and identically distributed samples does not hold for such data, two important problems are to accurately estimate group-level effect sizes, and to obtain powerful statistical tests against group-level null hypotheses. A common approach is to summarize subject-level data by a single quantity per subject, which is often the mean or the difference between class means, and treat these as samples in a group-level -test. This "naive" approach is, however, suboptimal in terms of statistical power, as it ignores information about the intra-subject variance. To address this issue, we review several approaches to deal with nested data, with a focus on methods that are easy to implement. With what we call the sufficient-summary-statistic approach, we highlight a computationally efficient technique that can improve statistical power by taking into account within-subject variances, and we provide step-by-step instructions on how to apply this approach to a number of frequently-used measures of effect size. The properties of the reviewed approaches and the potential benefits over a group-level -test are quantitatively assessed on simulated data and demonstrated on EEG data from a simulated-driving experiment. Hierarchically-organized data arise naturally in many psychology and neuroscience studies. As the standard assumption of independent and identically distributed samples does not hold for such data, two important problems are to accurately estimate group-level effect sizes, and to obtain powerful statistical tests against group-level null hypotheses. A common approach is to summarize subject-level data by a single quantity per subject, which is often the mean or the difference between class means, and treat these as samples in a group-level t -test. This “naive” approach is, however, suboptimal in terms of statistical power, as it ignores information about the intra-subject variance. To address this issue, we review several approaches to deal with nested data, with a focus on methods that are easy to implement. With what we call the sufficient-summary-statistic approach, we highlight a computationally efficient technique that can improve statistical power by taking into account within-subject variances, and we provide step-by-step instructions on how to apply this approach to a number of frequently-used measures of effect size. The properties of the reviewed approaches and the potential benefits over a group-level t -test are quantitatively assessed on simulated data and demonstrated on EEG data from a simulated-driving experiment. Hierarchically-organized data arise naturally in many psychology and neuroscience studies. As the standard assumption of independent and identically distributed samples does not hold for such data, two important problems are to accurately estimate group-level effect sizes, and to obtain powerful statistical tests against group-level null hypotheses. A common approach is to summarize subject-level data by a single quantity per subject, which is often the mean or the difference between class means, and treat these as samples in a group-level t-test. This “naive” approach is, however, suboptimal in terms of statistical power, as it ignores information about the intra-subject variance. To address this issue, we review several approaches to deal with nested data, with a focus on methods that are easy to implement. With what we call the sufficient-summary-statistic approach, we highlight a computationally efficient technique that can improve statistical power by taking into account within-subject variances, and we provide step-by-step instructions on how to apply this approach to a number of frequently-used measures of effect size. The properties of the reviewed approaches and the potential benefits over a group-level t-test are quantitatively assessed on simulated data and demonstrated on EEG data from a simulated-driving experiment. |
Author | Dowding, Irene Haufe, Stefan |
AuthorAffiliation | Machine Learning Group, Technische Universität Berlin , Berlin , Germany |
AuthorAffiliation_xml | – name: Machine Learning Group, Technische Universität Berlin , Berlin , Germany |
Author_xml | – sequence: 1 givenname: Irene surname: Dowding fullname: Dowding, Irene – sequence: 2 givenname: Stefan surname: Haufe fullname: Haufe, Stefan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29615885$$D View this record in MEDLINE/PubMed |
BookMark | eNp1UstuFDEQtFAQecCdExqJC5dd_B77goRCgJUiQIScLY-nvfFq1g72DCh_j2c3hCQSJ7fcVaXq7jpGBzFFQOglwUvGlH7r49W0XVJM1BJjgtkTdESkpAtBJDm4Vx-i41I2GEsqBXmGDqmWRCgljtD3b-k3ZD8NzcVox1DG4OzQrKKHDNFB41NuvkAZoW8-2NE2lyXEdXMxeR9cgDjWcru1-eYfvTxHT70dCry4fU_Q5cezH6efF-dfP61O358vHNd4XFCutHa8V9RyJ1qlCFjGWuW0sgKAg-Md7rGiouOko1gJB50GTGnvuk4RdoJWe90-2Y25zmH2YZINZveR8trYXA0NYLrWcQktKEIEd15qD6B0p5hmjjolq9a7vdb11G2hd3WybIcHog87MVyZdfplhJItF20VeHMrkNPPqS7MbENxMAw2QpqKoZiSljGJcYW-fgTdpCnHuipDqWpxS6ViFfXqvqM7K39PVwF4D3A5lZLB30EINnM6zC4dZk6H2aWjUuQjigvz2dI8Uxj-T_wD0jTAJQ |
CitedBy_id | crossref_primary_10_1016_j_biopsycho_2022_108291 crossref_primary_10_1016_j_crneur_2021_100024 crossref_primary_10_1038_s43856_024_00681_x crossref_primary_10_1364_BOE_389408 crossref_primary_10_1002_ieam_4911 crossref_primary_10_1371_journal_pone_0290142 crossref_primary_10_3390_ijms25063183 crossref_primary_10_1109_TNSRE_2020_3023116 crossref_primary_10_1136_bmjos_2020_100126 crossref_primary_10_1038_s41467_019_11797_3 crossref_primary_10_1038_s41597_024_03234_y crossref_primary_10_1371_journal_pcbi_1010061 crossref_primary_10_1038_s41598_019_42648_2 crossref_primary_10_1016_j_ijhm_2024_103824 crossref_primary_10_1083_jcb_202401074 crossref_primary_10_2196_26817 crossref_primary_10_3389_feart_2022_1077885 crossref_primary_10_1016_j_crneur_2022_100041 crossref_primary_10_3389_fnins_2020_575589 crossref_primary_10_1016_j_neuroimage_2023_120218 |
Cites_doi | 10.1191/0962280203sm341ra 10.1002/jrsm.1164 10.1155/2011/831409 10.1177/0962280215583568 10.1016/j.celrep.2016.02.050 10.1016/j.neuroimage.2013.10.067 10.1016/j.jspi.2009.09.017 10.1002/sim.650 10.1016/j.specom.2004.02.004 10.1256/003590002320603584 10.20982/tqmp.08.1.p052 10.1016/j.neuroimage.2016.07.040 10.1016/j.neuroimage.2009.03.025 10.1007/s10548-016-0498-y 10.1016/j.neuroimage.2013.01.047 10.1137/1.9781611970319 10.4324/9780203852279 10.1006/nimg.2001.1037 10.1016/j.neuroimage.2013.03.039 10.1016/j.neuron.2012.08.011 10.1080/00401706.1970.10488634 10.1016/j.neuroimage.2010.11.004 10.1016/S1053-8119(03)00435-X 10.1111/ejn.13610 10.1109/JPROC.2015.2425807 10.1214/aoms/1177699621 10.1162/jocn.2008.21174 10.1214/aoms/1177730491 10.3389/fpsyg.2012.00606 10.1016/0197-2456(86)90046-2 10.1177/0013164409344534 10.2307/3001666 10.1016/S0167-5877(00)00115-X 10.1093/bioinformatics/16.5.412 10.1016/j.neuroimage.2009.05.034 10.1214/009053604000001048 10.1093/beheco/ark016 10.1348/000711007X255327 10.1016/j.neuroimage.2006.11.054 10.2307/2332510 10.1111/1468-2389.00156 10.1207/S15328031US0202_02 10.2307/3001968 10.1016/j.jkss.2011.08.009 10.1016/j.neuron.2017.07.034 10.1016/j.jneumeth.2014.08.003 10.1126/science.1063736 10.1016/j.neuroimage.2012.01.133 10.1198/000313008X332421 10.1016/B978-012372560-8/50012-7 10.1016/S1053-8119(18)31587-8 10.1016/j.tics.2006.07.005 10.1148/radiology.143.1.7063747 10.1088/1741-2560/8/5/056001 10.3389/fnhum.2011.00028 10.1111/j.1467-9868.2012.01047.x 10.1037/0021-9010.72.1.146 10.1111/j.1420-9101.2005.00917.x 10.1006/nimg.2001.0933 10.2307/2331838 10.1016/j.neuroimage.2014.12.059 10.1016/j.patrec.2005.10.010 10.1002/9780470743386 |
ContentType | Journal Article |
Copyright | 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2018 Dowding and Haufe. 2018 Dowding and Haufe |
Copyright_xml | – notice: 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2018 Dowding and Haufe. 2018 Dowding and Haufe |
DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3389/fnhum.2018.00103 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Science Database ProQuest Biological Science Database (NC LIVE) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Statistics |
EISSN | 1662-5161 |
ExternalDocumentID | oai_doaj_org_article_b7c46e7e81154cf69fee89b8393c2c86 PMC5867457 29615885 10_3389_fnhum_2018_00103 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Seventh Framework Programme grantid: PIOF-GA-2013-625991 |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABIVO ABUWG ACGFO ACGFS ACXDI ADBBV ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EMOBN F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM TR2 C1A IPNFZ NPM PQGLB RIG 3V. 7XB 8FK PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c490t-24899c4d82a4c57881ea3378c98a5ee4ec4b0d0825b41b2085ceb9e022dcbb813 |
IEDL.DBID | M48 |
ISSN | 1662-5161 |
IngestDate | Wed Aug 27 01:27:44 EDT 2025 Thu Aug 21 18:01:49 EDT 2025 Thu Jul 10 18:41:37 EDT 2025 Fri Jul 25 12:00:56 EDT 2025 Mon Jul 21 05:53:40 EDT 2025 Tue Jul 01 03:44:19 EDT 2025 Thu Apr 24 22:56:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | sufficient summary statistic significance test statistical power Stouffer's method hierarchical inference group-level effect size event-related potentials inverse-variance-weighting |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c490t-24899c4d82a4c57881ea3378c98a5ee4ec4b0d0825b41b2085ceb9e022dcbb813 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Edited by: Vladimir Litvak, UCL Institute of Neurology, United Kingdom These authors have contributed equally to this work. Reviewed by: Alexandre Gramfort, Inria Saclay - Île-de-France Research Centre, France; Cyril R. Pernet, University of Edinburgh, United Kingdom |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnhum.2018.00103 |
PMID | 29615885 |
PQID | 2287072683 |
PQPubID | 4424408 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b7c46e7e81154cf69fee89b8393c2c86 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5867457 proquest_miscellaneous_2021733600 proquest_journals_2287072683 pubmed_primary_29615885 crossref_primary_10_3389_fnhum_2018_00103 crossref_citationtrail_10_3389_fnhum_2018_00103 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-03-19 |
PublicationDateYYYYMMDD | 2018-03-19 |
PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-19 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Lausanne |
PublicationTitle | Frontiers in human neuroscience |
PublicationTitleAlternate | Front Hum Neurosci |
PublicationYear | 2018 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | Cochran (B9) 1954; 10 Mumford (B40) 2009; 47 Thirion (B60) 2007; 35 Winkler (B66) 2015; 111 Chen (B8) 2013; 73 Norman (B43) 2006; 10 Guolo (B19) 2015; 26 Rousselet (B50) 2017; 46 Stouffer (B58) 1949 Haufe (B22) 2016 Pernet (B46) 2013; 3 Batista-Brito (B3) 2017; 95 Schubert (B54) 2009; 21 Borenstein (B5) 2009 Ruxton (B52) 2006; 17 Allefeld (B1) 2016; 141 Lur (B35) 2016; 14 Haufe (B24) 2011; 8 Poline (B48) 2012; 62 Fisher (B15) 1915; 10 Lahiri (B33) 2013 Greiner (B18) 2000; 45 Worsley (B68) 2002; 15 Whitlock (B64) 2005; 18 Haxby (B25) 2001; 293 Penny (B44) 2007 Marín-Martínez (B37) 2010; 70 Schmidt (B53) 2009; 62 Theiler (B59) 1997; 11 Haufe (B23) 2014; 87 Stephan (B57) 2009; 46 Gelman (B16) 2005; 33 Wilcoxon (B65) 1945; 1 Monti (B39) 2011; 5 Silver (B56) 1987; 72 Beckmann (B4) 2003; 20 Jackson (B31) 2010; 140 Brockwell (B6) 2001; 20 Dähne (B10) 2015; 103 Murdoch (B41) 2008; 62 Fawcett (B13) 2006; 27 DerSimonian (B11) 1986; 7 Field (B14) 2003; 2 Pernet (B45) 2015; 250 Mason (B38) 2002; 128 Todd (B61) 2013; 77 Honey (B28) 2012; 76 Woltman (B67) 2012; 8 Hoerl (B26) 1970; 12 Hunter (B30) 2000; 8 Quené (B49) 2004; 43 Efron (B12) 1982 Rukhin (B51) 2013; 75 Hox (B29) 2010 Nichols (B42) 2003; 12 Veroniki (B62) 2016; 7 Pernet (B47) 2011; 2011 Holmes (B27) 1998; 7 Mann (B36) 1947; 18 Shorack (B55) 1966; 37 Hanley (B20) 1982; 143 Lemm (B34) 2011; 56 Card (B7) 2011 Baldi (B2) 2000; 16 Kreiss (B32) 2011; 40 Genovese (B17) 2002; 15 Haufe (B21) 2017 Welch (B63) 1947; 34 |
References_xml | – volume: 12 start-page: 419 year: 2003 ident: B42 article-title: Controlling the familywise error rate in functional neuroimaging: a comparative review publication-title: Stat. Methods Med. Res. doi: 10.1191/0962280203sm341ra – volume: 7 start-page: 55 year: 2016 ident: B62 article-title: Methods to estimate the between-study variance and its uncertainty in meta-analysis publication-title: Res. Synthesis Methods doi: 10.1002/jrsm.1164 – volume: 2011 start-page: 3 year: 2011 ident: B47 article-title: LIMO EEG: a toolbox for hierarchical linear modeling of electroencephalographic data publication-title: Comput. Intell. Neurosci. doi: 10.1155/2011/831409 – volume: 26 start-page: 1500 year: 2015 ident: B19 article-title: Random-effects meta-analysis: the number of studies matters publication-title: Stat. Methods Med. Res. doi: 10.1177/0962280215583568 – volume: 14 start-page: 2538 year: 2016 ident: B35 article-title: Projection-specific visual feature encoding by layer 5 cortical subnetworks publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.02.050 – volume: 87 start-page: 96 year: 2014 ident: B23 article-title: On the interpretation of weight vectors of linear models in multivariate neuroimaging publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.10.067 – volume: 140 start-page: 961 year: 2010 ident: B31 article-title: How does the DerSimonian and Laird procedure for random effects meta-analysis compare with its more efficient but harder to compute counterparts? publication-title: J. Stat. Plann. Infer. doi: 10.1016/j.jspi.2009.09.017 – volume: 20 start-page: 825 year: 2001 ident: B6 article-title: A comparison of statistical methods for meta-analysis publication-title: Stat. Med. doi: 10.1002/sim.650 – volume: 43 start-page: 103 year: 2004 ident: B49 article-title: On multi-level modeling of data from repeated measures designs: a tutorial publication-title: Speech Commun. doi: 10.1016/j.specom.2004.02.004 – volume: 128 start-page: 2145 year: 2002 ident: B38 article-title: Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves: statistical significance and interpretation publication-title: Q. J. R. Meteorol. Soc. doi: 10.1256/003590002320603584 – volume: 8 start-page: 52 year: 2012 ident: B67 article-title: An introduction to hierarchical linear modeling publication-title: Tutor. Quant. Methods Psychol. doi: 10.20982/tqmp.08.1.p052 – volume: 141 start-page: 378 year: 2016 ident: B1 article-title: Valid population inference for information-based imaging: from the second-level t-test to prevalence inference publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.07.040 – volume: 46 start-page: 1004 year: 2009 ident: B57 article-title: Bayesian model selection for group studies publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.03.025 – year: 2016 ident: B22 article-title: A simulation framework for benchmarking EEG-based brain connectivity estimation methodologies publication-title: Brain Topogr. doi: 10.1007/s10548-016-0498-y – volume: 73 start-page: 176 year: 2013 ident: B8 article-title: Linear mixed-effects modeling approach to fMRI group analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.01.047 – volume-title: The Jackknife, the Bootstrap and Other Resampling Plans year: 1982 ident: B12 doi: 10.1137/1.9781611970319 – volume-title: Multilevel Analysis: Techniques and Applications year: 2010 ident: B29 doi: 10.4324/9780203852279 – volume: 15 start-page: 870 year: 2002 ident: B17 article-title: Thresholding of statistical maps in functional neuroimaging using the false discovery rate publication-title: Neuroimage doi: 10.1006/nimg.2001.1037 – volume-title: The American Soldier, Vol. 1: Adjustment during Army Life year: 1949 ident: B58 – volume: 77 start-page: 157 year: 2013 ident: B61 article-title: Confounds in multivariate pattern analysis: theory and rule representation case study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.03.039 – volume: 76 start-page: 423 year: 2012 ident: B28 article-title: Slow cortical dynamics and the accumulation of information over long timescales publication-title: Neuron doi: 10.1016/j.neuron.2012.08.011 – volume: 12 start-page: 55 year: 1970 ident: B26 article-title: Ridge regression: biased estimation for nonorthogonal problems publication-title: Technometrics doi: 10.1080/00401706.1970.10488634 – volume: 56 start-page: 387 year: 2011 ident: B34 article-title: Introduction to machine learning for brain imaging publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.11.004 – volume: 20 start-page: 1052 year: 2003 ident: B4 article-title: General multilevel linear modeling for group analysis in fMRI publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00435-X – volume: 46 start-page: 1738 year: 2017 ident: B50 article-title: Beyond differences in means: robust graphical methods to compare two groups in neuroscience publication-title: Eur. J. Neurosci. doi: 10.1111/ejn.13610 – volume: 103 start-page: 1507 year: 2015 ident: B10 article-title: Multivariate machine learning methods for fusing functional multimodal neuroimaging data publication-title: Proc. IEEE doi: 10.1109/JPROC.2015.2425807 – volume: 37 start-page: 284 year: 1966 ident: B55 article-title: Recursive generation of the distribution of the Mann-Whitney-Wilcoxon U-statistic under generalized Lehmann alternatives publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177699621 – volume: 21 start-page: 2407 year: 2009 ident: B54 article-title: Now you'll feel it, now you won't: EEG rhythms predict the effectiveness of perceptual masking publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn.2008.21174 – volume: 18 start-page: 50 year: 1947 ident: B36 article-title: On a test of whether one of two random variables is stochastically larger than the other publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177730491 – volume: 3 start-page: 606 year: 2013 ident: B46 article-title: Robust correlation analyses: false positive and power validation using a new open source matlab toolbox publication-title: Front. Psychol. doi: 10.3389/fpsyg.2012.00606 – volume: 7 start-page: 177 year: 1986 ident: B11 article-title: Meta-analysis in clinical trials publication-title: Control. Clin. Trials doi: 10.1016/0197-2456(86)90046-2 – volume: 70 start-page: 56 year: 2010 ident: B37 article-title: Weighting by inverse variance or by sample size in random-effects meta-analysis publication-title: Educ. Psychol. Meas. doi: 10.1177/0013164409344534 – volume: 10 start-page: 101 year: 1954 ident: B9 article-title: The combination of estimates from different experiments publication-title: Biometrics doi: 10.2307/3001666 – volume: 45 start-page: 23 year: 2000 ident: B18 article-title: Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests publication-title: Prevent. Vet. Med. doi: 10.1016/S0167-5877(00)00115-X – volume: 16 start-page: 412 year: 2000 ident: B2 article-title: Assessing the accuracy of prediction algorithms for classification: an overview publication-title: Bioinformatics doi: 10.1093/bioinformatics/16.5.412 – volume-title: Applied Meta-Analysis for Social Science Research year: 2011 ident: B7 – volume: 47 start-page: 1469 year: 2009 ident: B40 article-title: Simple group fMRI modeling and inference publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.05.034 – volume: 33 start-page: 1 year: 2005 ident: B16 article-title: Analysis of variance - why it is more important than ever publication-title: Ann. Stat. doi: 10.1214/009053604000001048 – volume: 17 start-page: 688 year: 2006 ident: B52 article-title: The unequal variance t-test is an underused alternative to Student's t-test and the Mann–Whitney U test publication-title: Behav. Ecol. doi: 10.1093/beheco/ark016 – volume: 11 start-page: 99 year: 1997 ident: B59 article-title: Using ‘surrogate surrogate data’ to calibrate the actual rate of false positives in tests for nonlinearity in time series publication-title: Fields Inst. Comm. – volume: 62 start-page: 97 year: 2009 ident: B53 article-title: Fixed-versus random-effects models in meta-analysis: model properties and an empirical comparison of differences in results publication-title: Brit. J. Math. Stat. Psychol. doi: 10.1348/000711007X255327 – volume: 35 start-page: 105 year: 2007 ident: B60 article-title: Analysis of a large fMRI cohort: statistical and methodological issues for group analyses publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.11.054 – volume: 34 start-page: 28 year: 1947 ident: B63 article-title: The generalization of Student's' problem when several different population variances are involved publication-title: Biometrika doi: 10.2307/2332510 – volume: 8 start-page: 275 year: 2000 ident: B30 article-title: Fixed effects vs. random effects meta-analysis models: implications for cumulative research knowledge publication-title: Int. J. Select. Assess. doi: 10.1111/1468-2389.00156 – volume: 2 start-page: 105 year: 2003 ident: B14 article-title: The problems in using fixed-effects models of meta-analysis on real-world data publication-title: Unders. Stat. Stat. Issues Psychol. Educ. Soc. Sci. doi: 10.1207/S15328031US0202_02 – volume: 1 start-page: 80 year: 1945 ident: B65 article-title: Individual comparisons by ranking methods publication-title: Biometr. Bull. doi: 10.2307/3001968 – volume: 40 start-page: 357 year: 2011 ident: B32 article-title: Bootstrap methods for dependent data: a review publication-title: J. Kor. Stat. Soc. doi: 10.1016/j.jkss.2011.08.009 – volume: 95 start-page: 884 year: 2017 ident: B3 article-title: Developmental dysfunction of vip interneurons impairs cortical circuits publication-title: Neuron doi: 10.1016/j.neuron.2017.07.034 – volume: 250 start-page: 85 year: 2015 ident: B45 article-title: Cluster-based computational methods for mass univariate analyses of event-related brain potentials/fields: a simulation study publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2014.08.003 – volume: 293 start-page: 2425 year: 2001 ident: B25 article-title: Distributed and overlapping representations of faces and objects in ventral temporal cortex publication-title: Science doi: 10.1126/science.1063736 – volume: 62 start-page: 871 year: 2012 ident: B48 article-title: The general linear model and fMRI: does love last forever? publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.01.133 – volume: 62 start-page: 242 year: 2008 ident: B41 article-title: P-values are random variables publication-title: Amer. Stat. doi: 10.1198/000313008X332421 – start-page: 156 volume-title: Statistical Parametric Mapping, Chap. 12 year: 2007 ident: B44 article-title: Random effects analysis doi: 10.1016/B978-012372560-8/50012-7 – volume: 7 start-page: S754 year: 1998 ident: B27 article-title: Generalisability, random effects and population inference publication-title: Neuroimage doi: 10.1016/S1053-8119(18)31587-8 – volume: 10 start-page: 424 year: 2006 ident: B43 article-title: Beyond mind-reading: multi-voxel pattern analysis of fMRI data publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2006.07.005 – volume: 143 start-page: 29 year: 1982 ident: B20 article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve publication-title: Radiology doi: 10.1148/radiology.143.1.7063747 – volume: 8 start-page: 056001 year: 2011 ident: B24 article-title: EEG potentials predict upcoming emergency brakings during simulated driving publication-title: J. Neural Eng. doi: 10.1088/1741-2560/8/5/056001 – volume: 5 start-page: 28 year: 2011 ident: B39 article-title: Statistical analysis of fMRI time-series: a critical review of the GLM approach publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2011.00028 – volume: 75 start-page: 451 year: 2013 ident: B51 article-title: Estimating heterogeneity variance in meta-analysis publication-title: J. R. Stat. Soc. Ser. B (Stat. Methodol.) doi: 10.1111/j.1467-9868.2012.01047.x – volume: 72 start-page: 146 year: 1987 ident: B56 article-title: Averaging correlation coefficients: should Fisher's z transformation be used? publication-title: J. Appl. Psychol. doi: 10.1037/0021-9010.72.1.146 – volume: 18 start-page: 1368 year: 2005 ident: B64 article-title: Combining probability from independent tests: the weighted Z-method is superior to Fisher's approach publication-title: J. Evol. Biol. doi: 10.1111/j.1420-9101.2005.00917.x – volume: 15 start-page: 1 year: 2002 ident: B68 article-title: A general statistical analysis for fMRI data publication-title: Neuroimage doi: 10.1006/nimg.2001.0933 – volume: 10 start-page: 507 year: 1915 ident: B15 article-title: Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population publication-title: Biometrika doi: 10.2307/2331838 – volume-title: Resampling Methods for Dependent Data year: 2013 ident: B33 – volume: 111 start-page: 489 year: 2015 ident: B66 article-title: Identifying Granger causal relationships between neural power dynamics and variables of interest publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.12.059 – volume: 27 start-page: 861 year: 2006 ident: B13 article-title: An introduction to ROC analysis publication-title: Patt. Recogn. Lett. doi: 10.1016/j.patrec.2005.10.010 – volume-title: Introduction to Meta-Analysis year: 2009 ident: B5 doi: 10.1002/9780470743386 – year: 2017 ident: B21 article-title: Elucidating relations between fMRI, ECoG and EEG through a common natural stimulus publication-title: bioRxiv |
SSID | ssj0062651 |
Score | 2.314584 |
Snippet | Hierarchically-organized data arise naturally in many psychology and neuroscience studies. As the standard assumption of independent and identically... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 103 |
SubjectTerms | Economic models EEG group-level effect size hierarchical inference Hypotheses inverse-variance-weighting Medical imaging Nervous system Neuroscience Parameter estimation Power significance test Statistical analysis Statistical inference Statistical power Statistics Studies sufficient summary statistic |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggYIEutMhICIlDtHFix_axPKrCYYUolfZm-TGrRdqmFd0c-PedcZKliyp64RrbsjMee76xx98w9laV4E0KtqhwrytkKmPhpYUilV7XkIhjKUf5LprTc_l1qZa3Un1RTFhPD9wLbh50lA1oMMQbE1eNXQEYG9Cu17GKJpNto80bnal-D0aUrkR_KYkumJ2v2nVHz84FBU6KMUHWYIQyV_9dAPPvOMlbhufkMXs0IEZ-3I_0CXsA7VM2PW7RW774zd_xHMOZD8en7Ps3Snq26jacQGTmYMamX8ZHfRwRKl_kE07-yW89zwED_KzLPBLYPT_r37L9aX79jJ2ffP7x8bQYsiYUUdpyW1QSXagok6m8jIrY4sHXtTbRGq8AJEQZykSeYZAiUIrOCMEC2vIUQzCifs4m7WULB4yXoK2vjUlKAAIN76P21mohUoWzGNSMzUcxujhQilNmi41D14IE77LgHQneZcHP2Ptdi6ueTuMfdT_QzOzqERF2_oDq4Qb1cPepx4wdjvPqhtV57Sq63dVVY7CPN7tiXFd0WeJbuOywDjlrdY14cMZe9GqwG0llEQcag_-v9xRkb6j7Je3PdebuVqbRUumX_-PfXrGHJC2KiBP2kE22vzo4Qoi0Da_zargBG4ARBA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELba5cKl4tFHClSuVFXqIdo8nNg-IaAg2sMKQZG4RX7Mlko0S9nNof--M44TulXF1Y_I8djjb8bjbxj7UGVglLc6LVDXpcJnLjVCQ-ozI0vwxLEUonxn9fm1-HpT3USH2zKGVQ46MShqv3DkI58WdCMni1qVh_e_UsoaRberMYXGc7aBKlipCds4Pp1dXA66GNF6lfeXk2iK6em8ve3o-XlOAZT5kCgrHkaBs_9_QPPfeMm_DqCzLfYiIkd-1It6mz2DdoftHrVoNf_8zT_yEMsZnOQ7bJMwZE_BvMsuLygT2ry742MpfufL8NKPI2zls-D25J_NyvAQRcCvukAugWPhV_0Dt8fuy5fs-uz028l5GlMppE7obJUWAu0qJ7wqjHAVUciDKUupnFamAhDghM08mYtW5JbydjqwGvCA985alZev2KRdtPCG8QykNqVSvsoB0YcxThqtZZ77AkVrq4RNhzltXOQZp3QXdw3aGySFJkihISk0QQoJ-zT2uO85Np5oe0xiGtsRO3YoWDx8b-Jma6x0ogYJiriG3LzWcwClLWLB0hVO1QnbH4TcxC27bB4XWMLej9W42egGxbSw6LANWXBliSAxYa_7NTGOpNAIDpXC_5drq2VtqOs17Y_bQOhdqVqKSr59elh7bJPmgQLgcr3PJquHDg4QEa3su7js_wD5Gw3g priority: 102 providerName: ProQuest |
Title | Powerful Statistical Inference for Nested Data Using Sufficient Summary Statistics |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29615885 https://www.proquest.com/docview/2287072683 https://www.proquest.com/docview/2021733600 https://pubmed.ncbi.nlm.nih.gov/PMC5867457 https://doaj.org/article/b7c46e7e81154cf69fee89b8393c2c86 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELbQ9sILAsaPwqiMhJB4CIsTJ7Yf0LTBxkCimjYq9c2ynSub1KXQNRL773fnpBlFFeIlD4kdO2c795199x1jb4oUnK68STL81yWySkPipIGkSp3KoSKOpejlOypPxvLrpJjchUd3ArzeaNpRPqnxYvb-96-bfVzwH8jiRH27N60vGgoqF-QWKYj6cxv1kqJ8Bt9kf6aAyD0mYxRlieYXAp320HLjG9aUVOTy3wRA__aj_EMxHT9kDzpEyQ_aKfCI3YP6Mds5qNGavrrhb3n08Yyb5zvs7JSSok2bGSeQGTmaseqXVdAfRwTLR3EHlH9yS8ejQwE_byLPBDbPz9tYt7vq10_Y-Pjo-8eTpMuqkARp0mWSSTSxgqx05mQoiE0eXJ4rHYx2BYCEIH1akeXopfCUwjOAN4C6vgrea5E_ZVv1vIbnjKegjMu1rgoBCEScC8oZo4SoMhxlXwzY3kqMNnSU45T5YmbR9CDB2yh4S4K3UfAD9q6v8bOl2_hH2UMamb4cEWXHG_PFD9utO-tVkCUo0EQ7FKalmQJo4xEW5iELuhyw3dW42tXksxmd_qqs1NjG6_4xrjs6THE1zBssQ8ZcniNeHLBn7TToe5IZxIla4_ertQmy1tX1J_XlReT2LnSpZKFe_Ee7L9l9EgY5xAmzy7aWiwZeIUJa-iHbPjwanZ4N4w4DXj9PxDAuhlvUbRMf |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7YFeELQ8thQwEiBxiDZxnNg-INTSVru0rKo-pN5S2_FSpDZburtC_VP8RmacZMsi1Fuv8UMTz8Mz9vgbgHdZ7I0qrY442rpIlLGLjNA-KmMjU18SxlLI8h3m_RPx9TQ7XYLf7VsYSqtsbWIw1OXY0Rl5j9ONnOS5Sj9f_YyoahTdrrYlNGqx2PM3vzBkm3wabCN_33O-u3P8pR81VQUiJ3Q8jbjAEMOJUnEjXEZo6t6kqVROK5N5L7wTNi4pcrIisVTC0nmrPe51pbNWJSnO-wCWRZrHvAPLWzvDg8PW9mN0kCX1ZSiGfro3qs5n9Nw9oYTNpC3M1Wx-oUbA_xzbf_Mz_9rwdh_Do8ZTZZu1aD2BJV-twtpmhVH65Q37wELuaDiUX4UV8llryOc1ODygymuj2QWbf8V5Bu3LQoZuMhuGY1a2baaGhawFdjQLYBZICzuqH9TdDp88hZN7WeRn0KnGlX8BLPZSm1SpMks8ejvGOGm0lklSchQlm3Wh165p4RpccyqvcVFgfENcKAIXCuJCEbjQhY_zEVc1pscdfbeITfN-hMYdPoyvvxeNchdWOpF76RVhG7lRrkfeK23R90wddyrvwkbL5KIxEZPiVqC78HbejMpNNzam8uMZ9qGIMUVJi7vwvJaJOSVcozOqFP6_XJCWBVIXW6of5wFAPFO5FJlcv5usN_Cwf_xtv9gfDPdewgqtCSXfJXoDOtPrmX-F3tjUvm5UgMHZfWvdH3cGSoc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVEK9IGiBbilgJEDisMo-vGv7gFBLGjUURVFLpd4W2-tQJLopTSLUv8avY8b7KEGot17XD3k9M_b32eMZgNdZ5LQsjQoTXOtCXkY21Fy5sIy0SF1JMZa8l-84Pzzln86yszX43b6FIbfKdk30C3U5s3RG3k_oRk4kuUz708YtYjIYfrj8GVIGKbppbdNp1Cpy5K5_IX2bvx8NUNZvkmR48OXjYdhkGAgtV9EiTDjSDctLmWhuM4qs7nSaCmmV1Jlz3FluopJYlOGxoXSW1hnlcN8rrTEyTrHfe7AuiBX1YH3_YDw5bvcBZApZXF-MIg1U_Wl1vqSn7zE5b8Ztkq5mI_T5Av4Hcv_11fxr8xs-hAcNamV7tZo9gjVXbcLWXoWM_eKavWXej9Qf0G_CBuHXOvzzFhxPKAsbTiXrvmI_o_aVIUPIzMb-yJUN9EIz78HATpY-sAWOhZ3Uj-tums8fw-mdTPIT6FWzym0Di5xQOpWyzGKHyEdrK7RSIo7LBNXKZAH02zktbBPjnFJt_CiQ65AUCi-FgqRQeCkE8K5rcVnH97il7j6JqatHkbn9h9nVt6Ix9MIIy3MnnKQ4R3aaq6lzUhnEoalNrMwD2G2FXDTLxby4Ue4AXnXFaOh0e6MrN1tiHWKPaYoANYCntU50I0kUAlMp8f_FirasDHW1pPp-7oOJZzIXPBM7tw_rJdxHays-j8ZHz2CDpoT88GK1C73F1dI9R2C2MC8aC2Dw9a6N7g-pvU68 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Powerful+Statistical+Inference+for+Nested+Data+Using+Sufficient+Summary+Statistics&rft.jtitle=Frontiers+in+human+neuroscience&rft.au=Dowding%2C+Irene&rft.au=Haufe%2C+Stefan&rft.date=2018-03-19&rft.issn=1662-5161&rft.eissn=1662-5161&rft.volume=12&rft.spage=103&rft_id=info:doi/10.3389%2Ffnhum.2018.00103&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5161&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5161&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5161&client=summon |