Powerful Statistical Inference for Nested Data Using Sufficient Summary Statistics

Hierarchically-organized data arise naturally in many psychology and neuroscience studies. As the standard assumption of independent and identically distributed samples does not hold for such data, two important problems are to accurately estimate group-level effect sizes, and to obtain powerful sta...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in human neuroscience Vol. 12; p. 103
Main Authors Dowding, Irene, Haufe, Stefan
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 19.03.2018
Frontiers Media S.A
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hierarchically-organized data arise naturally in many psychology and neuroscience studies. As the standard assumption of independent and identically distributed samples does not hold for such data, two important problems are to accurately estimate group-level effect sizes, and to obtain powerful statistical tests against group-level null hypotheses. A common approach is to summarize subject-level data by a single quantity per subject, which is often the mean or the difference between class means, and treat these as samples in a group-level -test. This "naive" approach is, however, suboptimal in terms of statistical power, as it ignores information about the intra-subject variance. To address this issue, we review several approaches to deal with nested data, with a focus on methods that are easy to implement. With what we call the sufficient-summary-statistic approach, we highlight a computationally efficient technique that can improve statistical power by taking into account within-subject variances, and we provide step-by-step instructions on how to apply this approach to a number of frequently-used measures of effect size. The properties of the reviewed approaches and the potential benefits over a group-level -test are quantitatively assessed on simulated data and demonstrated on EEG data from a simulated-driving experiment.
AbstractList Hierarchically-organized data arise naturally in many psychology and neuroscience studies. As the standard assumption of independent and identically distributed samples does not hold for such data, two important problems are to accurately estimate group-level effect sizes, and to obtain powerful statistical tests against group-level null hypotheses. A common approach is to summarize subject-level data by a single quantity per subject, which is often the mean or the difference between class means, and treat these as samples in a group-level t-test. This "naive" approach is, however, suboptimal in terms of statistical power, as it ignores information about the intra-subject variance. To address this issue, we review several approaches to deal with nested data, with a focus on methods that are easy to implement. With what we call the sufficient-summary-statistic approach, we highlight a computationally efficient technique that can improve statistical power by taking into account within-subject variances, and we provide step-by-step instructions on how to apply this approach to a number of frequently-used measures of effect size. The properties of the reviewed approaches and the potential benefits over a group-level t-test are quantitatively assessed on simulated data and demonstrated on EEG data from a simulated-driving experiment.Hierarchically-organized data arise naturally in many psychology and neuroscience studies. As the standard assumption of independent and identically distributed samples does not hold for such data, two important problems are to accurately estimate group-level effect sizes, and to obtain powerful statistical tests against group-level null hypotheses. A common approach is to summarize subject-level data by a single quantity per subject, which is often the mean or the difference between class means, and treat these as samples in a group-level t-test. This "naive" approach is, however, suboptimal in terms of statistical power, as it ignores information about the intra-subject variance. To address this issue, we review several approaches to deal with nested data, with a focus on methods that are easy to implement. With what we call the sufficient-summary-statistic approach, we highlight a computationally efficient technique that can improve statistical power by taking into account within-subject variances, and we provide step-by-step instructions on how to apply this approach to a number of frequently-used measures of effect size. The properties of the reviewed approaches and the potential benefits over a group-level t-test are quantitatively assessed on simulated data and demonstrated on EEG data from a simulated-driving experiment.
Hierarchically-organized data arise naturally in many psychology and neuroscience studies. As the standard assumption of independent and identically distributed samples does not hold for such data, two important problems are to accurately estimate group-level effect sizes, and to obtain powerful statistical tests against group-level null hypotheses. A common approach is to summarize subject-level data by a single quantity per subject, which is often the mean or the difference between class means, and treat these as samples in a group-level -test. This "naive" approach is, however, suboptimal in terms of statistical power, as it ignores information about the intra-subject variance. To address this issue, we review several approaches to deal with nested data, with a focus on methods that are easy to implement. With what we call the sufficient-summary-statistic approach, we highlight a computationally efficient technique that can improve statistical power by taking into account within-subject variances, and we provide step-by-step instructions on how to apply this approach to a number of frequently-used measures of effect size. The properties of the reviewed approaches and the potential benefits over a group-level -test are quantitatively assessed on simulated data and demonstrated on EEG data from a simulated-driving experiment.
Hierarchically-organized data arise naturally in many psychology and neuroscience studies. As the standard assumption of independent and identically distributed samples does not hold for such data, two important problems are to accurately estimate group-level effect sizes, and to obtain powerful statistical tests against group-level null hypotheses. A common approach is to summarize subject-level data by a single quantity per subject, which is often the mean or the difference between class means, and treat these as samples in a group-level t -test. This “naive” approach is, however, suboptimal in terms of statistical power, as it ignores information about the intra-subject variance. To address this issue, we review several approaches to deal with nested data, with a focus on methods that are easy to implement. With what we call the sufficient-summary-statistic approach, we highlight a computationally efficient technique that can improve statistical power by taking into account within-subject variances, and we provide step-by-step instructions on how to apply this approach to a number of frequently-used measures of effect size. The properties of the reviewed approaches and the potential benefits over a group-level t -test are quantitatively assessed on simulated data and demonstrated on EEG data from a simulated-driving experiment.
Hierarchically-organized data arise naturally in many psychology and neuroscience studies. As the standard assumption of independent and identically distributed samples does not hold for such data, two important problems are to accurately estimate group-level effect sizes, and to obtain powerful statistical tests against group-level null hypotheses. A common approach is to summarize subject-level data by a single quantity per subject, which is often the mean or the difference between class means, and treat these as samples in a group-level t-test. This “naive” approach is, however, suboptimal in terms of statistical power, as it ignores information about the intra-subject variance. To address this issue, we review several approaches to deal with nested data, with a focus on methods that are easy to implement. With what we call the sufficient-summary-statistic approach, we highlight a computationally efficient technique that can improve statistical power by taking into account within-subject variances, and we provide step-by-step instructions on how to apply this approach to a number of frequently-used measures of effect size. The properties of the reviewed approaches and the potential benefits over a group-level t-test are quantitatively assessed on simulated data and demonstrated on EEG data from a simulated-driving experiment.
Author Dowding, Irene
Haufe, Stefan
AuthorAffiliation Machine Learning Group, Technische Universität Berlin , Berlin , Germany
AuthorAffiliation_xml – name: Machine Learning Group, Technische Universität Berlin , Berlin , Germany
Author_xml – sequence: 1
  givenname: Irene
  surname: Dowding
  fullname: Dowding, Irene
– sequence: 2
  givenname: Stefan
  surname: Haufe
  fullname: Haufe, Stefan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29615885$$D View this record in MEDLINE/PubMed
BookMark eNp1UstuFDEQtFAQecCdExqJC5dd_B77goRCgJUiQIScLY-nvfFq1g72DCh_j2c3hCQSJ7fcVaXq7jpGBzFFQOglwUvGlH7r49W0XVJM1BJjgtkTdESkpAtBJDm4Vx-i41I2GEsqBXmGDqmWRCgljtD3b-k3ZD8NzcVox1DG4OzQrKKHDNFB41NuvkAZoW8-2NE2lyXEdXMxeR9cgDjWcru1-eYfvTxHT70dCry4fU_Q5cezH6efF-dfP61O358vHNd4XFCutHa8V9RyJ1qlCFjGWuW0sgKAg-Md7rGiouOko1gJB50GTGnvuk4RdoJWe90-2Y25zmH2YZINZveR8trYXA0NYLrWcQktKEIEd15qD6B0p5hmjjolq9a7vdb11G2hd3WybIcHog87MVyZdfplhJItF20VeHMrkNPPqS7MbENxMAw2QpqKoZiSljGJcYW-fgTdpCnHuipDqWpxS6ViFfXqvqM7K39PVwF4D3A5lZLB30EINnM6zC4dZk6H2aWjUuQjigvz2dI8Uxj-T_wD0jTAJQ
CitedBy_id crossref_primary_10_1016_j_biopsycho_2022_108291
crossref_primary_10_1016_j_crneur_2021_100024
crossref_primary_10_1038_s43856_024_00681_x
crossref_primary_10_1364_BOE_389408
crossref_primary_10_1002_ieam_4911
crossref_primary_10_1371_journal_pone_0290142
crossref_primary_10_3390_ijms25063183
crossref_primary_10_1109_TNSRE_2020_3023116
crossref_primary_10_1136_bmjos_2020_100126
crossref_primary_10_1038_s41467_019_11797_3
crossref_primary_10_1038_s41597_024_03234_y
crossref_primary_10_1371_journal_pcbi_1010061
crossref_primary_10_1038_s41598_019_42648_2
crossref_primary_10_1016_j_ijhm_2024_103824
crossref_primary_10_1083_jcb_202401074
crossref_primary_10_2196_26817
crossref_primary_10_3389_feart_2022_1077885
crossref_primary_10_1016_j_crneur_2022_100041
crossref_primary_10_3389_fnins_2020_575589
crossref_primary_10_1016_j_neuroimage_2023_120218
Cites_doi 10.1191/0962280203sm341ra
10.1002/jrsm.1164
10.1155/2011/831409
10.1177/0962280215583568
10.1016/j.celrep.2016.02.050
10.1016/j.neuroimage.2013.10.067
10.1016/j.jspi.2009.09.017
10.1002/sim.650
10.1016/j.specom.2004.02.004
10.1256/003590002320603584
10.20982/tqmp.08.1.p052
10.1016/j.neuroimage.2016.07.040
10.1016/j.neuroimage.2009.03.025
10.1007/s10548-016-0498-y
10.1016/j.neuroimage.2013.01.047
10.1137/1.9781611970319
10.4324/9780203852279
10.1006/nimg.2001.1037
10.1016/j.neuroimage.2013.03.039
10.1016/j.neuron.2012.08.011
10.1080/00401706.1970.10488634
10.1016/j.neuroimage.2010.11.004
10.1016/S1053-8119(03)00435-X
10.1111/ejn.13610
10.1109/JPROC.2015.2425807
10.1214/aoms/1177699621
10.1162/jocn.2008.21174
10.1214/aoms/1177730491
10.3389/fpsyg.2012.00606
10.1016/0197-2456(86)90046-2
10.1177/0013164409344534
10.2307/3001666
10.1016/S0167-5877(00)00115-X
10.1093/bioinformatics/16.5.412
10.1016/j.neuroimage.2009.05.034
10.1214/009053604000001048
10.1093/beheco/ark016
10.1348/000711007X255327
10.1016/j.neuroimage.2006.11.054
10.2307/2332510
10.1111/1468-2389.00156
10.1207/S15328031US0202_02
10.2307/3001968
10.1016/j.jkss.2011.08.009
10.1016/j.neuron.2017.07.034
10.1016/j.jneumeth.2014.08.003
10.1126/science.1063736
10.1016/j.neuroimage.2012.01.133
10.1198/000313008X332421
10.1016/B978-012372560-8/50012-7
10.1016/S1053-8119(18)31587-8
10.1016/j.tics.2006.07.005
10.1148/radiology.143.1.7063747
10.1088/1741-2560/8/5/056001
10.3389/fnhum.2011.00028
10.1111/j.1467-9868.2012.01047.x
10.1037/0021-9010.72.1.146
10.1111/j.1420-9101.2005.00917.x
10.1006/nimg.2001.0933
10.2307/2331838
10.1016/j.neuroimage.2014.12.059
10.1016/j.patrec.2005.10.010
10.1002/9780470743386
ContentType Journal Article
Copyright 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2018 Dowding and Haufe. 2018 Dowding and Haufe
Copyright_xml – notice: 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2018 Dowding and Haufe. 2018 Dowding and Haufe
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fnhum.2018.00103
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Science Database
ProQuest Biological Science Database (NC LIVE)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Statistics
EISSN 1662-5161
ExternalDocumentID oai_doaj_org_article_b7c46e7e81154cf69fee89b8393c2c86
PMC5867457
29615885
10_3389_fnhum_2018_00103
Genre Journal Article
GrantInformation_xml – fundername: Seventh Framework Programme
  grantid: PIOF-GA-2013-625991
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABIVO
ABUWG
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EMOBN
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
TR2
C1A
IPNFZ
NPM
PQGLB
RIG
3V.
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c490t-24899c4d82a4c57881ea3378c98a5ee4ec4b0d0825b41b2085ceb9e022dcbb813
IEDL.DBID M48
ISSN 1662-5161
IngestDate Wed Aug 27 01:27:44 EDT 2025
Thu Aug 21 18:01:49 EDT 2025
Thu Jul 10 18:41:37 EDT 2025
Fri Jul 25 12:00:56 EDT 2025
Mon Jul 21 05:53:40 EDT 2025
Tue Jul 01 03:44:19 EDT 2025
Thu Apr 24 22:56:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords sufficient summary statistic
significance test
statistical power
Stouffer's method
hierarchical inference
group-level effect size
event-related potentials
inverse-variance-weighting
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-24899c4d82a4c57881ea3378c98a5ee4ec4b0d0825b41b2085ceb9e022dcbb813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by: Vladimir Litvak, UCL Institute of Neurology, United Kingdom
These authors have contributed equally to this work.
Reviewed by: Alexandre Gramfort, Inria Saclay - Île-de-France Research Centre, France; Cyril R. Pernet, University of Edinburgh, United Kingdom
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnhum.2018.00103
PMID 29615885
PQID 2287072683
PQPubID 4424408
ParticipantIDs doaj_primary_oai_doaj_org_article_b7c46e7e81154cf69fee89b8393c2c86
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5867457
proquest_miscellaneous_2021733600
proquest_journals_2287072683
pubmed_primary_29615885
crossref_primary_10_3389_fnhum_2018_00103
crossref_citationtrail_10_3389_fnhum_2018_00103
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-03-19
PublicationDateYYYYMMDD 2018-03-19
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-19
  day: 19
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in human neuroscience
PublicationTitleAlternate Front Hum Neurosci
PublicationYear 2018
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Cochran (B9) 1954; 10
Mumford (B40) 2009; 47
Thirion (B60) 2007; 35
Winkler (B66) 2015; 111
Chen (B8) 2013; 73
Norman (B43) 2006; 10
Guolo (B19) 2015; 26
Rousselet (B50) 2017; 46
Stouffer (B58) 1949
Haufe (B22) 2016
Pernet (B46) 2013; 3
Batista-Brito (B3) 2017; 95
Schubert (B54) 2009; 21
Borenstein (B5) 2009
Ruxton (B52) 2006; 17
Allefeld (B1) 2016; 141
Lur (B35) 2016; 14
Haufe (B24) 2011; 8
Poline (B48) 2012; 62
Fisher (B15) 1915; 10
Lahiri (B33) 2013
Greiner (B18) 2000; 45
Worsley (B68) 2002; 15
Whitlock (B64) 2005; 18
Haxby (B25) 2001; 293
Penny (B44) 2007
Marín-Martínez (B37) 2010; 70
Schmidt (B53) 2009; 62
Theiler (B59) 1997; 11
Haufe (B23) 2014; 87
Stephan (B57) 2009; 46
Gelman (B16) 2005; 33
Wilcoxon (B65) 1945; 1
Monti (B39) 2011; 5
Silver (B56) 1987; 72
Beckmann (B4) 2003; 20
Jackson (B31) 2010; 140
Brockwell (B6) 2001; 20
Dähne (B10) 2015; 103
Murdoch (B41) 2008; 62
Fawcett (B13) 2006; 27
DerSimonian (B11) 1986; 7
Field (B14) 2003; 2
Pernet (B45) 2015; 250
Mason (B38) 2002; 128
Todd (B61) 2013; 77
Honey (B28) 2012; 76
Woltman (B67) 2012; 8
Hoerl (B26) 1970; 12
Hunter (B30) 2000; 8
Quené (B49) 2004; 43
Efron (B12) 1982
Rukhin (B51) 2013; 75
Hox (B29) 2010
Nichols (B42) 2003; 12
Veroniki (B62) 2016; 7
Pernet (B47) 2011; 2011
Holmes (B27) 1998; 7
Mann (B36) 1947; 18
Shorack (B55) 1966; 37
Hanley (B20) 1982; 143
Lemm (B34) 2011; 56
Card (B7) 2011
Baldi (B2) 2000; 16
Kreiss (B32) 2011; 40
Genovese (B17) 2002; 15
Haufe (B21) 2017
Welch (B63) 1947; 34
References_xml – volume: 12
  start-page: 419
  year: 2003
  ident: B42
  article-title: Controlling the familywise error rate in functional neuroimaging: a comparative review
  publication-title: Stat. Methods Med. Res.
  doi: 10.1191/0962280203sm341ra
– volume: 7
  start-page: 55
  year: 2016
  ident: B62
  article-title: Methods to estimate the between-study variance and its uncertainty in meta-analysis
  publication-title: Res. Synthesis Methods
  doi: 10.1002/jrsm.1164
– volume: 2011
  start-page: 3
  year: 2011
  ident: B47
  article-title: LIMO EEG: a toolbox for hierarchical linear modeling of electroencephalographic data
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2011/831409
– volume: 26
  start-page: 1500
  year: 2015
  ident: B19
  article-title: Random-effects meta-analysis: the number of studies matters
  publication-title: Stat. Methods Med. Res.
  doi: 10.1177/0962280215583568
– volume: 14
  start-page: 2538
  year: 2016
  ident: B35
  article-title: Projection-specific visual feature encoding by layer 5 cortical subnetworks
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.02.050
– volume: 87
  start-page: 96
  year: 2014
  ident: B23
  article-title: On the interpretation of weight vectors of linear models in multivariate neuroimaging
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.10.067
– volume: 140
  start-page: 961
  year: 2010
  ident: B31
  article-title: How does the DerSimonian and Laird procedure for random effects meta-analysis compare with its more efficient but harder to compute counterparts?
  publication-title: J. Stat. Plann. Infer.
  doi: 10.1016/j.jspi.2009.09.017
– volume: 20
  start-page: 825
  year: 2001
  ident: B6
  article-title: A comparison of statistical methods for meta-analysis
  publication-title: Stat. Med.
  doi: 10.1002/sim.650
– volume: 43
  start-page: 103
  year: 2004
  ident: B49
  article-title: On multi-level modeling of data from repeated measures designs: a tutorial
  publication-title: Speech Commun.
  doi: 10.1016/j.specom.2004.02.004
– volume: 128
  start-page: 2145
  year: 2002
  ident: B38
  article-title: Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves: statistical significance and interpretation
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1256/003590002320603584
– volume: 8
  start-page: 52
  year: 2012
  ident: B67
  article-title: An introduction to hierarchical linear modeling
  publication-title: Tutor. Quant. Methods Psychol.
  doi: 10.20982/tqmp.08.1.p052
– volume: 141
  start-page: 378
  year: 2016
  ident: B1
  article-title: Valid population inference for information-based imaging: from the second-level t-test to prevalence inference
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.07.040
– volume: 46
  start-page: 1004
  year: 2009
  ident: B57
  article-title: Bayesian model selection for group studies
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.03.025
– year: 2016
  ident: B22
  article-title: A simulation framework for benchmarking EEG-based brain connectivity estimation methodologies
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-016-0498-y
– volume: 73
  start-page: 176
  year: 2013
  ident: B8
  article-title: Linear mixed-effects modeling approach to fMRI group analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.01.047
– volume-title: The Jackknife, the Bootstrap and Other Resampling Plans
  year: 1982
  ident: B12
  doi: 10.1137/1.9781611970319
– volume-title: Multilevel Analysis: Techniques and Applications
  year: 2010
  ident: B29
  doi: 10.4324/9780203852279
– volume: 15
  start-page: 870
  year: 2002
  ident: B17
  article-title: Thresholding of statistical maps in functional neuroimaging using the false discovery rate
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.1037
– volume-title: The American Soldier, Vol. 1: Adjustment during Army Life
  year: 1949
  ident: B58
– volume: 77
  start-page: 157
  year: 2013
  ident: B61
  article-title: Confounds in multivariate pattern analysis: theory and rule representation case study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.03.039
– volume: 76
  start-page: 423
  year: 2012
  ident: B28
  article-title: Slow cortical dynamics and the accumulation of information over long timescales
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.08.011
– volume: 12
  start-page: 55
  year: 1970
  ident: B26
  article-title: Ridge regression: biased estimation for nonorthogonal problems
  publication-title: Technometrics
  doi: 10.1080/00401706.1970.10488634
– volume: 56
  start-page: 387
  year: 2011
  ident: B34
  article-title: Introduction to machine learning for brain imaging
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.11.004
– volume: 20
  start-page: 1052
  year: 2003
  ident: B4
  article-title: General multilevel linear modeling for group analysis in fMRI
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00435-X
– volume: 46
  start-page: 1738
  year: 2017
  ident: B50
  article-title: Beyond differences in means: robust graphical methods to compare two groups in neuroscience
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/ejn.13610
– volume: 103
  start-page: 1507
  year: 2015
  ident: B10
  article-title: Multivariate machine learning methods for fusing functional multimodal neuroimaging data
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2425807
– volume: 37
  start-page: 284
  year: 1966
  ident: B55
  article-title: Recursive generation of the distribution of the Mann-Whitney-Wilcoxon U-statistic under generalized Lehmann alternatives
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177699621
– volume: 21
  start-page: 2407
  year: 2009
  ident: B54
  article-title: Now you'll feel it, now you won't: EEG rhythms predict the effectiveness of perceptual masking
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn.2008.21174
– volume: 18
  start-page: 50
  year: 1947
  ident: B36
  article-title: On a test of whether one of two random variables is stochastically larger than the other
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177730491
– volume: 3
  start-page: 606
  year: 2013
  ident: B46
  article-title: Robust correlation analyses: false positive and power validation using a new open source matlab toolbox
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2012.00606
– volume: 7
  start-page: 177
  year: 1986
  ident: B11
  article-title: Meta-analysis in clinical trials
  publication-title: Control. Clin. Trials
  doi: 10.1016/0197-2456(86)90046-2
– volume: 70
  start-page: 56
  year: 2010
  ident: B37
  article-title: Weighting by inverse variance or by sample size in random-effects meta-analysis
  publication-title: Educ. Psychol. Meas.
  doi: 10.1177/0013164409344534
– volume: 10
  start-page: 101
  year: 1954
  ident: B9
  article-title: The combination of estimates from different experiments
  publication-title: Biometrics
  doi: 10.2307/3001666
– volume: 45
  start-page: 23
  year: 2000
  ident: B18
  article-title: Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests
  publication-title: Prevent. Vet. Med.
  doi: 10.1016/S0167-5877(00)00115-X
– volume: 16
  start-page: 412
  year: 2000
  ident: B2
  article-title: Assessing the accuracy of prediction algorithms for classification: an overview
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/16.5.412
– volume-title: Applied Meta-Analysis for Social Science Research
  year: 2011
  ident: B7
– volume: 47
  start-page: 1469
  year: 2009
  ident: B40
  article-title: Simple group fMRI modeling and inference
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.05.034
– volume: 33
  start-page: 1
  year: 2005
  ident: B16
  article-title: Analysis of variance - why it is more important than ever
  publication-title: Ann. Stat.
  doi: 10.1214/009053604000001048
– volume: 17
  start-page: 688
  year: 2006
  ident: B52
  article-title: The unequal variance t-test is an underused alternative to Student's t-test and the Mann–Whitney U test
  publication-title: Behav. Ecol.
  doi: 10.1093/beheco/ark016
– volume: 11
  start-page: 99
  year: 1997
  ident: B59
  article-title: Using ‘surrogate surrogate data’ to calibrate the actual rate of false positives in tests for nonlinearity in time series
  publication-title: Fields Inst. Comm.
– volume: 62
  start-page: 97
  year: 2009
  ident: B53
  article-title: Fixed-versus random-effects models in meta-analysis: model properties and an empirical comparison of differences in results
  publication-title: Brit. J. Math. Stat. Psychol.
  doi: 10.1348/000711007X255327
– volume: 35
  start-page: 105
  year: 2007
  ident: B60
  article-title: Analysis of a large fMRI cohort: statistical and methodological issues for group analyses
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.11.054
– volume: 34
  start-page: 28
  year: 1947
  ident: B63
  article-title: The generalization of Student's' problem when several different population variances are involved
  publication-title: Biometrika
  doi: 10.2307/2332510
– volume: 8
  start-page: 275
  year: 2000
  ident: B30
  article-title: Fixed effects vs. random effects meta-analysis models: implications for cumulative research knowledge
  publication-title: Int. J. Select. Assess.
  doi: 10.1111/1468-2389.00156
– volume: 2
  start-page: 105
  year: 2003
  ident: B14
  article-title: The problems in using fixed-effects models of meta-analysis on real-world data
  publication-title: Unders. Stat. Stat. Issues Psychol. Educ. Soc. Sci.
  doi: 10.1207/S15328031US0202_02
– volume: 1
  start-page: 80
  year: 1945
  ident: B65
  article-title: Individual comparisons by ranking methods
  publication-title: Biometr. Bull.
  doi: 10.2307/3001968
– volume: 40
  start-page: 357
  year: 2011
  ident: B32
  article-title: Bootstrap methods for dependent data: a review
  publication-title: J. Kor. Stat. Soc.
  doi: 10.1016/j.jkss.2011.08.009
– volume: 95
  start-page: 884
  year: 2017
  ident: B3
  article-title: Developmental dysfunction of vip interneurons impairs cortical circuits
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.07.034
– volume: 250
  start-page: 85
  year: 2015
  ident: B45
  article-title: Cluster-based computational methods for mass univariate analyses of event-related brain potentials/fields: a simulation study
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2014.08.003
– volume: 293
  start-page: 2425
  year: 2001
  ident: B25
  article-title: Distributed and overlapping representations of faces and objects in ventral temporal cortex
  publication-title: Science
  doi: 10.1126/science.1063736
– volume: 62
  start-page: 871
  year: 2012
  ident: B48
  article-title: The general linear model and fMRI: does love last forever?
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.133
– volume: 62
  start-page: 242
  year: 2008
  ident: B41
  article-title: P-values are random variables
  publication-title: Amer. Stat.
  doi: 10.1198/000313008X332421
– start-page: 156
  volume-title: Statistical Parametric Mapping, Chap. 12
  year: 2007
  ident: B44
  article-title: Random effects analysis
  doi: 10.1016/B978-012372560-8/50012-7
– volume: 7
  start-page: S754
  year: 1998
  ident: B27
  article-title: Generalisability, random effects and population inference
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(18)31587-8
– volume: 10
  start-page: 424
  year: 2006
  ident: B43
  article-title: Beyond mind-reading: multi-voxel pattern analysis of fMRI data
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2006.07.005
– volume: 143
  start-page: 29
  year: 1982
  ident: B20
  article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve
  publication-title: Radiology
  doi: 10.1148/radiology.143.1.7063747
– volume: 8
  start-page: 056001
  year: 2011
  ident: B24
  article-title: EEG potentials predict upcoming emergency brakings during simulated driving
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/8/5/056001
– volume: 5
  start-page: 28
  year: 2011
  ident: B39
  article-title: Statistical analysis of fMRI time-series: a critical review of the GLM approach
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2011.00028
– volume: 75
  start-page: 451
  year: 2013
  ident: B51
  article-title: Estimating heterogeneity variance in meta-analysis
  publication-title: J. R. Stat. Soc. Ser. B (Stat. Methodol.)
  doi: 10.1111/j.1467-9868.2012.01047.x
– volume: 72
  start-page: 146
  year: 1987
  ident: B56
  article-title: Averaging correlation coefficients: should Fisher's z transformation be used?
  publication-title: J. Appl. Psychol.
  doi: 10.1037/0021-9010.72.1.146
– volume: 18
  start-page: 1368
  year: 2005
  ident: B64
  article-title: Combining probability from independent tests: the weighted Z-method is superior to Fisher's approach
  publication-title: J. Evol. Biol.
  doi: 10.1111/j.1420-9101.2005.00917.x
– volume: 15
  start-page: 1
  year: 2002
  ident: B68
  article-title: A general statistical analysis for fMRI data
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0933
– volume: 10
  start-page: 507
  year: 1915
  ident: B15
  article-title: Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population
  publication-title: Biometrika
  doi: 10.2307/2331838
– volume-title: Resampling Methods for Dependent Data
  year: 2013
  ident: B33
– volume: 111
  start-page: 489
  year: 2015
  ident: B66
  article-title: Identifying Granger causal relationships between neural power dynamics and variables of interest
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.12.059
– volume: 27
  start-page: 861
  year: 2006
  ident: B13
  article-title: An introduction to ROC analysis
  publication-title: Patt. Recogn. Lett.
  doi: 10.1016/j.patrec.2005.10.010
– volume-title: Introduction to Meta-Analysis
  year: 2009
  ident: B5
  doi: 10.1002/9780470743386
– year: 2017
  ident: B21
  article-title: Elucidating relations between fMRI, ECoG and EEG through a common natural stimulus
  publication-title: bioRxiv
SSID ssj0062651
Score 2.314584
Snippet Hierarchically-organized data arise naturally in many psychology and neuroscience studies. As the standard assumption of independent and identically...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 103
SubjectTerms Economic models
EEG
group-level effect size
hierarchical inference
Hypotheses
inverse-variance-weighting
Medical imaging
Nervous system
Neuroscience
Parameter estimation
Power
significance test
Statistical analysis
Statistical inference
Statistical power
Statistics
Studies
sufficient summary statistic
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggYIEutMhICIlDtHFix_axPKrCYYUolfZm-TGrRdqmFd0c-PedcZKliyp64RrbsjMee76xx98w9laV4E0KtqhwrytkKmPhpYUilV7XkIhjKUf5LprTc_l1qZa3Un1RTFhPD9wLbh50lA1oMMQbE1eNXQEYG9Cu17GKJpNto80bnal-D0aUrkR_KYkumJ2v2nVHz84FBU6KMUHWYIQyV_9dAPPvOMlbhufkMXs0IEZ-3I_0CXsA7VM2PW7RW774zd_xHMOZD8en7Ps3Snq26jacQGTmYMamX8ZHfRwRKl_kE07-yW89zwED_KzLPBLYPT_r37L9aX79jJ2ffP7x8bQYsiYUUdpyW1QSXagok6m8jIrY4sHXtTbRGq8AJEQZykSeYZAiUIrOCMEC2vIUQzCifs4m7WULB4yXoK2vjUlKAAIN76P21mohUoWzGNSMzUcxujhQilNmi41D14IE77LgHQneZcHP2Ptdi6ueTuMfdT_QzOzqERF2_oDq4Qb1cPepx4wdjvPqhtV57Sq63dVVY7CPN7tiXFd0WeJbuOywDjlrdY14cMZe9GqwG0llEQcag_-v9xRkb6j7Je3PdebuVqbRUumX_-PfXrGHJC2KiBP2kE22vzo4Qoi0Da_zargBG4ARBA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELba5cKl4tFHClSuVFXqIdo8nNg-IaAg2sMKQZG4RX7Mlko0S9nNof--M44TulXF1Y_I8djjb8bjbxj7UGVglLc6LVDXpcJnLjVCQ-ozI0vwxLEUonxn9fm1-HpT3USH2zKGVQ46MShqv3DkI58WdCMni1qVh_e_UsoaRberMYXGc7aBKlipCds4Pp1dXA66GNF6lfeXk2iK6em8ve3o-XlOAZT5kCgrHkaBs_9_QPPfeMm_DqCzLfYiIkd-1It6mz2DdoftHrVoNf_8zT_yEMsZnOQ7bJMwZE_BvMsuLygT2ry742MpfufL8NKPI2zls-D25J_NyvAQRcCvukAugWPhV_0Dt8fuy5fs-uz028l5GlMppE7obJUWAu0qJ7wqjHAVUciDKUupnFamAhDghM08mYtW5JbydjqwGvCA985alZev2KRdtPCG8QykNqVSvsoB0YcxThqtZZ77AkVrq4RNhzltXOQZp3QXdw3aGySFJkihISk0QQoJ-zT2uO85Np5oe0xiGtsRO3YoWDx8b-Jma6x0ogYJiriG3LzWcwClLWLB0hVO1QnbH4TcxC27bB4XWMLej9W42egGxbSw6LANWXBliSAxYa_7NTGOpNAIDpXC_5drq2VtqOs17Y_bQOhdqVqKSr59elh7bJPmgQLgcr3PJquHDg4QEa3su7js_wD5Gw3g
  priority: 102
  providerName: ProQuest
Title Powerful Statistical Inference for Nested Data Using Sufficient Summary Statistics
URI https://www.ncbi.nlm.nih.gov/pubmed/29615885
https://www.proquest.com/docview/2287072683
https://www.proquest.com/docview/2021733600
https://pubmed.ncbi.nlm.nih.gov/PMC5867457
https://doaj.org/article/b7c46e7e81154cf69fee89b8393c2c86
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELbQ9sILAsaPwqiMhJB4CIsTJ7Yf0LTBxkCimjYq9c2ynSub1KXQNRL773fnpBlFFeIlD4kdO2c795199x1jb4oUnK68STL81yWySkPipIGkSp3KoSKOpejlOypPxvLrpJjchUd3ArzeaNpRPqnxYvb-96-bfVzwH8jiRH27N60vGgoqF-QWKYj6cxv1kqJ8Bt9kf6aAyD0mYxRlieYXAp320HLjG9aUVOTy3wRA__aj_EMxHT9kDzpEyQ_aKfCI3YP6Mds5qNGavrrhb3n08Yyb5zvs7JSSok2bGSeQGTmaseqXVdAfRwTLR3EHlH9yS8ejQwE_byLPBDbPz9tYt7vq10_Y-Pjo-8eTpMuqkARp0mWSSTSxgqx05mQoiE0eXJ4rHYx2BYCEIH1akeXopfCUwjOAN4C6vgrea5E_ZVv1vIbnjKegjMu1rgoBCEScC8oZo4SoMhxlXwzY3kqMNnSU45T5YmbR9CDB2yh4S4K3UfAD9q6v8bOl2_hH2UMamb4cEWXHG_PFD9utO-tVkCUo0EQ7FKalmQJo4xEW5iELuhyw3dW42tXksxmd_qqs1NjG6_4xrjs6THE1zBssQ8ZcniNeHLBn7TToe5IZxIla4_ertQmy1tX1J_XlReT2LnSpZKFe_Ee7L9l9EgY5xAmzy7aWiwZeIUJa-iHbPjwanZ4N4w4DXj9PxDAuhlvUbRMf
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7YFeELQ8thQwEiBxiDZxnNg-INTSVru0rKo-pN5S2_FSpDZburtC_VP8RmacZMsi1Fuv8UMTz8Mz9vgbgHdZ7I0qrY442rpIlLGLjNA-KmMjU18SxlLI8h3m_RPx9TQ7XYLf7VsYSqtsbWIw1OXY0Rl5j9ONnOS5Sj9f_YyoahTdrrYlNGqx2PM3vzBkm3wabCN_33O-u3P8pR81VQUiJ3Q8jbjAEMOJUnEjXEZo6t6kqVROK5N5L7wTNi4pcrIisVTC0nmrPe51pbNWJSnO-wCWRZrHvAPLWzvDg8PW9mN0kCX1ZSiGfro3qs5n9Nw9oYTNpC3M1Wx-oUbA_xzbf_Mz_9rwdh_Do8ZTZZu1aD2BJV-twtpmhVH65Q37wELuaDiUX4UV8llryOc1ODygymuj2QWbf8V5Bu3LQoZuMhuGY1a2baaGhawFdjQLYBZICzuqH9TdDp88hZN7WeRn0KnGlX8BLPZSm1SpMks8ejvGOGm0lklSchQlm3Wh165p4RpccyqvcVFgfENcKAIXCuJCEbjQhY_zEVc1pscdfbeITfN-hMYdPoyvvxeNchdWOpF76RVhG7lRrkfeK23R90wddyrvwkbL5KIxEZPiVqC78HbejMpNNzam8uMZ9qGIMUVJi7vwvJaJOSVcozOqFP6_XJCWBVIXW6of5wFAPFO5FJlcv5usN_Cwf_xtv9gfDPdewgqtCSXfJXoDOtPrmX-F3tjUvm5UgMHZfWvdH3cGSoc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVEK9IGiBbilgJEDisMo-vGv7gFBLGjUURVFLpd4W2-tQJLopTSLUv8avY8b7KEGot17XD3k9M_b32eMZgNdZ5LQsjQoTXOtCXkY21Fy5sIy0SF1JMZa8l-84Pzzln86yszX43b6FIbfKdk30C3U5s3RG3k_oRk4kuUz708YtYjIYfrj8GVIGKbppbdNp1Cpy5K5_IX2bvx8NUNZvkmR48OXjYdhkGAgtV9EiTDjSDctLmWhuM4qs7nSaCmmV1Jlz3FluopJYlOGxoXSW1hnlcN8rrTEyTrHfe7AuiBX1YH3_YDw5bvcBZApZXF-MIg1U_Wl1vqSn7zE5b8Ztkq5mI_T5Av4Hcv_11fxr8xs-hAcNamV7tZo9gjVXbcLWXoWM_eKavWXej9Qf0G_CBuHXOvzzFhxPKAsbTiXrvmI_o_aVIUPIzMb-yJUN9EIz78HATpY-sAWOhZ3Uj-tums8fw-mdTPIT6FWzym0Di5xQOpWyzGKHyEdrK7RSIo7LBNXKZAH02zktbBPjnFJt_CiQ65AUCi-FgqRQeCkE8K5rcVnH97il7j6JqatHkbn9h9nVt6Ix9MIIy3MnnKQ4R3aaq6lzUhnEoalNrMwD2G2FXDTLxby4Ue4AXnXFaOh0e6MrN1tiHWKPaYoANYCntU50I0kUAlMp8f_FirasDHW1pPp-7oOJZzIXPBM7tw_rJdxHays-j8ZHz2CDpoT88GK1C73F1dI9R2C2MC8aC2Dw9a6N7g-pvU68
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Powerful+Statistical+Inference+for+Nested+Data+Using+Sufficient+Summary+Statistics&rft.jtitle=Frontiers+in+human+neuroscience&rft.au=Dowding%2C+Irene&rft.au=Haufe%2C+Stefan&rft.date=2018-03-19&rft.issn=1662-5161&rft.eissn=1662-5161&rft.volume=12&rft.spage=103&rft_id=info:doi/10.3389%2Ffnhum.2018.00103&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5161&client=summon