High-density genetic linkage map construction and identification of fruit-related QTLs in pear using SNP and SSR markers
Pear (Pyrus spp) is an important fruit crop, grown in all temperate regions of the world, with global production ranked after grape and apples among deciduous tree crops. A high-density linkage map is a valuable tool for fine mapping quantitative trait loci (QTL) and map-based gene cloning. In this...
Saved in:
Published in | Journal of experimental botany Vol. 65; no. 20; pp. 5771 - 5781 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press [etc.]
01.11.2014
Oxford University Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Pear (Pyrus spp) is an important fruit crop, grown in all temperate regions of the world, with global production ranked after grape and apples among deciduous tree crops. A high-density linkage map is a valuable tool for fine mapping quantitative trait loci (QTL) and map-based gene cloning. In this study, we firstly constructed a high-density linkage map of pear using SNPs integrated with SSRs, developed by the rapid and robust technology of restriction-associated DNA sequencing (RADseq). The linkage map consists of 3143 SNP markers and 98 SSRs, 3241 markers in total, spanning 2243.4 cM, with an average marker distance of 0.70 cM. Anchoring SSRs were able to anchor seventeen linkage groups to their corresponding chromosomes. Based on this high-density integrated pear linkage map and two years of fruit phenotyping, a total of 32 potential QTLs for 11 traits, including length of pedicel (LFP), single fruit weight (SFW), soluble solid content (SSC), transverse diameter (TD), vertical diameter (VD), calyx status (CS), flesh colour (FC), juice content (JC), number of seeds (NS), skin colour (SC), and skin smooth (SS), were identified and positioned on the genetic map. Among them, some important fruit-related traits have for the first time been identified, such as calyx status, length of pedicel, and flesh colour, and reliable localization of QTLs were verified repeatable. This high-density linkage map of pear is a worthy reference for mapping important fruit traits, QTL identification, and comparison and combination of different genetic maps.
A highly saturated pear genetic map was constructed using over 3000 SNP markers developed by RADseq integrated with anchored SSR markers. The reliable QTLs of several fruit traits were also identified. |
---|---|
Bibliography: | http://dx.doi.org/10.1093/jxb/eru311 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0022-0957 1460-2431 |
DOI: | 10.1093/jxb/eru311 |