Hybrid fusion of linear, non-linear and spectral models for the dynamic modeling of sEMG and skeletal muscle force: An application to upper extremity amputation

Abstract Estimating skeletal muscle (finger) forces using surface Electromyography (sEMG) signals poses many challenges. In general, the sEMG measurements are based on single sensor data. In this paper, two novel hybrid fusion techniques for estimating the skeletal muscle force from the sEMG array s...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 43; no. 11; pp. 1815 - 1826
Main Authors Potluri, Chandrasekhar, Anugolu, Madhavi, Schoen, Marco P, Subbaram Naidu, D, Urfer, Alex, Chiu, Steve
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.11.2013
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Estimating skeletal muscle (finger) forces using surface Electromyography (sEMG) signals poses many challenges. In general, the sEMG measurements are based on single sensor data. In this paper, two novel hybrid fusion techniques for estimating the skeletal muscle force from the sEMG array sensors are proposed. The sEMG signals are pre-processed using five different filters: Butterworth, Chebychev Type II, Exponential, Half-Gaussian and Wavelet transforms. Dynamic models are extracted from the acquired data using Nonlinear Wiener Hammerstein (NLWH) models and Spectral Analysis Frequency Dependent Resolution (SPAFDR) models based system identification techniques. A detailed comparison is provided for the proposed filters and models using 18 healthy subjects. Wavelet transforms give higher mean correlation of 72.6±1.7 (mean±SD) and 70.4±1.5 (mean±SD) for NLWH and SPAFDR models, respectively, when compared to the other filters used in this work. Experimental verification of the fusion based hybrid models with wavelet transform shows a 96% mean correlation and 3.9% mean relative error with a standard deviation of ±1.3 and ±0.9 respectively between the overall hybrid fusion algorithm estimated and the actual force for 18 test subjects’ k-fold cross validation data.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0010-4825
1879-0534
DOI:10.1016/j.compbiomed.2013.08.023