Kinetics of the Alkaline Hydrolysis of Nitrocellulose

Cellulose nitrate (nitrocellulose) is an explosive solid substance used in large quantities in various formulations of rocket and gun propellants. Safe destruction of nitrocellulose can be achieved by alkaline hydrolysis, which converts it to biodegradable products that can then be treated by conven...

Full description

Saved in:
Bibliographic Details
Published inWater environment research Vol. 73; no. 2; pp. 185 - 191
Main Authors Christodoulatos, Christos, Su, Tsan-Liang, Koutsospyros, Agamemnon
Format Journal Article
LanguageEnglish
Published Alexandria, VA Water Environment Federation 01.03.2001
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cellulose nitrate (nitrocellulose) is an explosive solid substance used in large quantities in various formulations of rocket and gun propellants. Safe destruction of nitrocellulose can be achieved by alkaline hydrolysis, which converts it to biodegradable products that can then be treated by conventional biological processes. The kinetics of the alkaline hydrolysis of munitions-grade nitrocellulose in sodium hydroxide solutions were investigated in completely mixed batch reactors. Experiments were conducted using solutions of alkaline strength ranging from 0.1 to 15% by mass and temperatures in the range of 30 to 90 °C. Regression analysis of the kinetic data revealed that alkaline hydrolysis of nitrocellulose is of the order 1.0 and 1.5 with respect to nitrocellulose and hydroxide concentration, respectively. The activation energy of the hydrolysis reaction was found to be 100.9 kJ/mol with a preexponential Arrhenius constant of$4.73\times 10^{13}$. Nitrite and nitrate, in a 3:1 ratio, were the primary nitrogen species present in the posthydrolysis solution. The kinetic information is pertinent to the development and optimization of nitrocellulose chemical-biological treatment systems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1061-4303
1554-7531
DOI:10.2175/106143001X138840