Long-Term Behavior of the Atlantic Interhemispheric SST Gradient in the CMIP5 Historical Simulations
Multidecadal and longer changes to the Atlantic interhemispheric sea surface temperature gradient (AITG) in phase 5 of the Coupled Model Intercomparison Project (CMIP5) historical simulations are investigated. Observations show a secular trend to this gradient over most of the twentieth century, wit...
Saved in:
Published in | Journal of climate Vol. 26; no. 21; pp. 8628 - 8640 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Boston, MA
American Meteorological Society
01.11.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Multidecadal and longer changes to the Atlantic interhemispheric sea surface temperature gradient (AITG) in phase 5 of the Coupled Model Intercomparison Project (CMIP5) historical simulations are investigated. Observations show a secular trend to this gradient over most of the twentieth century, with the southern lobe warming faster relative to its northern counterpart. A previous study of phase 3 of the CMIP (CMIP3) suggests that this trend is partially forced by anthropogenic sulfate aerosols. This analysis collectively confirms the partially forced trend for the CMIP5 and by anthropogenic aerosols. Like the CMIP3, the CMIP5 also simulates a reversal in the AITG trend in the late 1970s, which was attributed to a leveling off of the anthropogenic aerosol influence and increased influence of greenhouse gases in the late twentieth century. Two (of 25) CMIP5 models, however, systematically simulate a twentieth-century trend opposite to observed, leading to some uncertainty regarding the forced nature of the AITG trend. The observed AITG also exhibits a pronounced multidecadal modulation on top of the trend, associated with the Atlantic multidecadal oscillation (AMO). Motivated by a recent suggestion that the AMO is a forced response to aerosols, the causes of this multidecadal behavior were also examined. A few of the CMIP5 models analyzed do produce multidecadal AITG variations that are correlated to the observed AMO-like variation, but only one, the Hadley Centre Global Environmental Model, version 2 (HadGEM2), systematically simulates AMO-like behavior with both the requisite amplitude and phase. The CMIP5 simulations thus point to a robust aerosol influence on the historical AITG trend but not to the AMO-like multidecadal behavior. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 AC02-05CH11231 USDOE Office of Science (SC) |
ISSN: | 0894-8755 1520-0442 |
DOI: | 10.1175/jcli-d-12-00487.1 |