Comparative Genomic Insights into Ecophysiology of Neutrophilic, Microaerophilic Iron Oxidizing Bacteria

Neutrophilic microaerophilic iron-oxidizing bacteria (FeOB) are thought to play a significant role in cycling of carbon, iron and associated elements in both freshwater and marine iron-rich environments. However, the roles of the neutrophilic microaerophilic FeOB are still poorly understood due larg...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in microbiology Vol. 6; p. 1265
Main Authors Kato, Shingo, Ohkuma, Moriya, Powell, Deborah H, Krepski, Sean T, Oshima, Kenshiro, Hattori, Masahira, Shapiro, Nicole, Woyke, Tanja, Chan, Clara S
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 13.11.2015
Frontiers Media S.A
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Neutrophilic microaerophilic iron-oxidizing bacteria (FeOB) are thought to play a significant role in cycling of carbon, iron and associated elements in both freshwater and marine iron-rich environments. However, the roles of the neutrophilic microaerophilic FeOB are still poorly understood due largely to the difficulty of cultivation and lack of functional gene markers. Here, we analyze the genomes of two freshwater neutrophilic microaerophilic stalk-forming FeOB, Ferriphaselus amnicola OYT1 and Ferriphaselus strain R-1. Phylogenetic analyses confirm that these are distinct species within Betaproteobacteria; we describe strain R-1 and propose the name F. globulitus. We compare the genomes to those of two freshwater Betaproteobacterial and three marine Zetaproteobacterial FeOB isolates in order to look for mechanisms common to all FeOB, or just stalk-forming FeOB. The OYT1 and R-1 genomes both contain homologs to cyc2, which encodes a protein that has been shown to oxidize Fe in the acidophilic FeOB, Acidithiobacillus ferrooxidans. This c-type cytochrome common to all seven microaerophilic FeOB isolates, strengthening the case for its common utility in the Fe oxidation pathway. In contrast, the OYT1 and R-1 genomes lack mto genes found in other freshwater FeOB. OYT1 and R-1 both have genes that suggest they can oxidize sulfur species. Both have the genes necessary to fix carbon by the Calvin-Benson-Basshom pathway, while only OYT1 has the genes necessary to fix nitrogen. The stalk-forming FeOB share xag genes that may help form the polysaccharide structure of stalks. Both OYT1 and R-1 make a novel biomineralization structure, short rod-shaped Fe oxyhydroxides much smaller than their stalks; these oxides are constantly shed, and may be a vector for C, P, and metal transport to downstream environments. Our results show that while different FeOB are adapted to particular niches, freshwater and marine FeOB likely share common mechanisms for Fe oxidation electron transport and biomineralization pathways.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
AC02-05CH11231
USDOE Office of Science (SC), Biological and Environmental Research (BER)
Edited by: Beth Orcutt, Bigelow Laboratory for Ocean Sciences, USA
This article was submitted to Extreme Microbiology, a section of the journal Frontiers in Microbiology
Reviewed by: James Hemp, California Institute of Technology, USA; Roman Barco, University of Southern California, USA
Present address: Shingo Kato, Seafloor Resources Research Project, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima, Yokosuka 237-0061, Japan
ISSN:1664-302X
1664-302X
DOI:10.3389/fmicb.2015.01265